We present a timing and spectral analysis of the X-ray pulsar XTE J1946+274 observed with Suzaku during an outburst decline in 2010 October and compare with previous results. XTE J1946+274 is a transient X-ray binary consisting of a Be-type star and a neutron star with a 15.75 s pulse period in a 172 d orbit with 2-3 outbursts per orbit during phases of activity. We improve the orbital solution using data from multiple instruments. The X-ray spectrum can be described by an absorbed Fermi-Dirac cutoff power law model along with a narrow Fe K line at 6.4 keV and a weak Cyclotron Resonance Scattering Feature (CRSF) at ~35 keV. The Suzaku data are consistent with the previously observed continuum flux versus iron line flux correlation expected from fluorescence emission along the line of sight. However, the observed iron line flux is slightly higher, indicating the possibility of a higher iron abundance or the presence of non-uniform material. We argue that the source most likely has only been observed in the subcritical (non-radiation dominated) state since its pulse profile is stable over all observed luminosities and the energy of the CRSF is approximately the same at the highest (~$5 times 10^{37} $erg s$^{-1}$) and lowest (~$5 times 10^{36} $erg s$^{-1}$) observed 3-60 keV luminosities.
We report on a series of outbursts of the high mass X-ray binary XTE J1946+274 in 2010/2011 as observed with INTEGRAL, RXTE, and Swift. We discuss possible mechanisms resulting in the extraordinary outburst behavior of this source. The X-ray spectra can be described by standard phenomenological models, enhanced by an absorption feature of unknown origin at about 10 keV and a narrow iron K alpha fluorescence line at 6.4 keV, which are variable in flux and pulse phase. We find possible evidence for the presence of a cyclotron resonance scattering feature at about 25 keV at the 93% level. The presence of a strong cyclotron line at 35 keV seen in data from the sources 1998 outburst and confirmed by a reanalysis of these data can be excluded. This result indicates that the cyclotron line feature in XTE J1946+274 is variable between individual outbursts.
We report evidence for an ~ 80 d periodicity in the X-ray flux of the hard transient pulsar XTE J1946+274. The 1.3-12 keV light curve obtained with the RossiXTE All Sky Monitor shows five regularly spaced flares over a ~ 1 year baseline starting from the outburst onset in Sept. 1998. The first and strongest flare is somewhat longer than the subsequent four flares, which recur in a fairly periodic fashion. This suggests that the profile of the first flare is dominated by the time variability of the Be star ejection episode, while the following four flares are primarily caused by the neutron star motion along an eccentric orbit.
We report on the discovery of the optical/IR counterpart of the 15.8s transient X-ray pulsar XTE J1946+274. We re-analysed archival BeppoSAX observations of XTE J1946+274, obtaining a new refined position (a circle with 22 radius at 90% confidence level). Based on this new position we carried out optical and infra-red (IR) follow-up observations. Within the new error circle we found a relatively optical faint (B=18.6) IR bright (H=12.1) early type reddened star (V--R=1.6). The optical spectra show strong H-alpha and H-beta emission lines. The IR photometric observations of the field confirm the presence of an IR excess for the H-alpha--emitting star (K=11.6, J--H=0.6) which is likely surrounded by a circumstellar envelope. Spectroscopic and photometric data indicate a B0--1V--IVe spectral-type star located at a distance of 8--10kpc and confirm the Be-star/X-ray binary nature of XTE J1946+274.
Observations of the transient accreting pulsar XTE J1946+274 made with the Rossi X-ray Timing Explorer during the course of the 1998 September-November outburst, reveal a cyclotron resonance scattering feature (or cyclotron line) in the hard X-ray spectrum near 35 keV. We determine a centroid energy of 36.2 +0.5/-0.7 keV, which implies a magnetic field strength of 3.1(1+z)x10^12 G, where z is the gravitational redshift of the scattering region. The optical depth, Tau = 0.33 +0.07/-0.06, and width, sigma = 3.37 +0.92/-0.75 keV, are typical of known cyclotron lines in other pulsars. This discovery makes XTE J1946+274 one of thirteen pulsars with securely detected cyclotron lines resulting in direct magnetic field measurements.
We report on observations aimed at searching for flux variations from the proposed IR counterpart of the Anomalous X-ray Pulsar XTE J1810-197. These data, obtained in March 2004 with the adaptive optics camera NAOS-CONICA at the ESO VLT, show that the candidate proposed by Israel et al. (2004) was fainter by Delta H=0.7+/-0.2 and Delta Ks=0.5+/-0.1 with respect to October 2003, confirming it as the IR counterpart of XTE J1810-197. We also report on an XMM-Newton observation carried out the day before the VLT observations. The 0.5-10 keV absorbed flux of the source was 2.2x10^-11 erg/s/cm^2, which is less by a factor of about two compared to the previous XMM-Newton observation on September 2003. Therefore, we conclude that a similar flux decrease took place in the X-ray and IR bands. We briefly discuss these results in the framework of the proposed mechanism(s) responsible for the IR variable emission of Anomalous X-ray Pulsars.
Log in to be able to interact and post comments
comments
Fetching comments
Sorry, something went wrong while fetching comments!
Diana M. Marcu-Cheatham
,Katja Pottschmidt
,Matthias Kuhnel
.
(2015)
.
"The Transient Accereting X-Ray Pulsar XTE J1946+274: Stability of the X-Ray Properties at Low Flux and Updated Orbital Solution"
.
Diana Marcu-Cheatham
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا