We report the discovery of an extremely dense group of massive galaxies at the centre of the protocluster at $z=3.09$ in the SSA22 field from near-infrared spectroscopy conducted with the Multi-Object InfraRed Camera and Spectrograph (MOIRCS) equipped on the Subaru Telecope. The newly discovered group comprises seven galaxies confirmed at $z_{rm spec}approx3.09$ within 180 kpc including five massive objects with the stellar masses larger than $10^{10.5}~M_{odot}$ and is associated with a bright sub-mm source SSA22-AzTEC14. The dynamical mass of the group estimated from the line-of-sight velocity dispersion of the members is $M_{rm dyn}sim1.6pm0.3times10^{13}~M_{odot}$. Such a dense group is expected to be very rare at high redshift as we found only a few comparable systems in large-volume cosmological simulations. Such rare groups in the simulations are hosted in collapsed halos with $M_{rm vir}=10^{13.4}-10^{14.0}~M_{odot}$ and evolve into the brightest cluster galaxies (BCGs) of the most massive clusters at present. The observed AzTEC14 group at $z=3.09$ is therefore very likely to be a proto-BCG in the multiple merger phase. The observed total stellar mass of the group is $5.8^{+5.1}_{-2.0}times10^{11}~M_{odot}$. It suggests that over half the stellar mass of its descendant had been formed by $z=3$. Moreover, we identified over two members for each of the four Ly$alpha$ blobs (LABs) using our new spectroscopic data. This verifies our previous argument that many of the LABs in the SSA22 protocluster associated with multiple developed stellar components.