Traditional concept of cognitive radio is the coexistence of primary and secondary user in multiplexed manner. we consider the opportunistic channel access scheme in IEEE 802.11 based networks subject to the interference mitigation scenario. According to the protocol rule and due to the constraint of message passing, secondary user is unaware of the exact state of the primary user. In this paper, we have proposed an online algorithm for the secondary which assist determining a backoff counter or the decision of being idle for utilizing the time/frequency slot unoccupied by the primary user. Proposed algorithm is based on conventional reinforcement learning technique namely Q-Learning. Simulation has been conducted in order to prove the strength of this algorithm and also results have been compared with our contemporary solution of this problem where secondary user is aware of some states of primary user.
In multiuser MIMO (MU-MIMO) LANs, the achievable throughput of a client depends on who are transmitting concurrently with it. Existing MU-MIMO MAC protocols however enable clients to use the traditional 802.11 contention to contend for concurrent transmission opportunities on the uplink. Such a contention-based protocol not only wastes lots of channel time on multiple rounds of contention, but also fails to maximally deliver the gain of MU-MIMO because users randomly join concurrent transmissions without considering their channel characteristics. To address such inefficiency, this paper introduces MIMOMate, a leader-contention-based MU-MIMO MAC protocol that matches clients as concurrent transmitters according to their channel characteristics to maximally deliver the MU-MIMO gain, while ensuring all users to fairly share concurrent transmission opportunities. Furthermore, MIMOMate elects the leader of the matched users to contend for transmission opportunities using traditional 802.11 CSMA/CA. It hence requires only a single contention overhead for concurrent streams, and can be compatible with legacy 802.11 devices. A prototype implementation in USRP-N200 shows that MIMOMate achieves an average throughput gain of 1.42x and 1.52x over the traditional contention-based protocol for 2-antenna and 3-antenna AP scenarios, respectively, and also provides fairness for clients.
With the development of the 5G and Internet of Things, amounts of wireless devices need to share the limited spectrum resources. Dynamic spectrum access (DSA) is a promising paradigm to remedy the problem of inefficient spectrum utilization brought upon by the historical command-and-control approach to spectrum allocation. In this paper, we investigate the distributed DSA problem for multi-user in a typical multi-channel cognitive radio network. The problem is formulated as a decentralized partially observable Markov decision process (Dec-POMDP), and we proposed a centralized off-line training and distributed on-line execution framework based on cooperative multi-agent reinforcement learning (MARL). We employ the deep recurrent Q-network (DRQN) to address the partial observability of the state for each cognitive user. The ultimate goal is to learn a cooperative strategy which maximizes the sum throughput of cognitive radio network in distributed fashion without coordination information exchange between cognitive users. Finally, we validate the proposed algorithm in various settings through extensive experiments. From the simulation results, we can observe that the proposed algorithm can converge fast and achieve almost the optimal performance.
In order to meet the constantly increasing demand by mobile terminals for higher data rates with limited wireless spectrum resource, cognitive radio and spectrum aggregation technologies have attracted much attention due to its capacity in improving spectrum efficiency. Combing cognitive relay and spectrum aggregation technologies, in this paper, we propose a dynamic spectrum aggregation strategy based on the Markov Prediction of the state of spectrum for the cooperatively relay networks on a multi-user and multi-relay scenario aiming at ensuring the user channel capacity and maximizing the network throughput. The spectrum aggregation strategy is executed through two steps. First, predict the state of spectrum through Markov prediction. Based on the prediction results of state of spectrum, a spectrum aggregation strategy is proposed. Simulation results show that the spectrum prediction process can observably lower the outage rate, and the spectrum aggregation strategy can greatly improve the network throughput.
Designing clustered unmanned aerial vehicle (UAV) communication networks based on cognitive radio (CR) and reinforcement learning can significantly improve the intelligence level of clustered UAV communication networks and the robustness of the system in a time-varying environment. Among them, designing smarter systems for spectrum sensing and access is a key research issue in CR. Therefore, we focus on the dynamic cooperative spectrum sensing and channel access in clustered cognitive UAV (CUAV) communication networks. Due to the lack of prior statistical information on the primary user (PU) channel occupancy state, we propose to use multi-agent reinforcement learning (MARL) to model CUAV spectrum competition and cooperative decision-making problem in this dynamic scenario, and a return function based on the weighted compound of sensing-transmission cost and utility is introduced to characterize the real-time rewards of multi-agent game. On this basis, a time slot multi-round revisit exhaustive search algorithm based on virtual controller (VC-EXH), a Q-learning algorithm based on independent learner (IL-Q) and a deep Q-learning algorithm based on independent learner (IL-DQN) are respectively proposed. Further, the information exchange overhead, execution complexity and convergence of the three algorithms are briefly analyzed. Through the numerical simulation analysis, all three algorithms can converge quickly, significantly improve system performance and increase the utilization of idle spectrum resources.
In this paper, we provide a throughput analysis of the IEEE 802.11 protocol at the data link layer in non-saturated traffic conditions taking into account the impact of both transmission channel and capture effects in Rayleigh fading environment. Impacts of both non-ideal channel and capture become important in terms of the actual observed throughput in typical network conditions whereby traffic is mainly unsaturated, specially in an environment of high interference. We extend the multi-dimensional Markovian state transition model characterizing the behavior at the MAC layer by including transmission states that account for packet transmission failures due to errors caused by propagation through the channel, along with a state characterizing the system when there are no packets to be transmitted in the buffer of a station.
Rukhsana Ruby
,Victor C.M. Leung
,
.
(2015)
.
"Reinforcement Learning Based Transmission Strategy of Cognitive User in IEEE 802.11 based Networks"
.
Rukhsana Ruby Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا