No Arabic abstract
We report Faraday rotation measurements of 11 extragalactic radio sources with lines of sight through the Rosette Nebula, a prominent HII region associated with the star cluster NGC 2244. It is also a prototypical example of a stellar bubble produced by the winds of the stars in NGC 2244. The goal of these measurements is to better determine the strength and structure of the magnetic field in the nebula. We calculate the rotation measure (RM) through two methods, a least-squares fit to $chi$( $lambda^2$) and Rotation Measure Synthesis. In conjunction with our results from Savage et al. (2013), we find an excess RM due to the shell of the nebula of +40 to +1200 rad m$^{-2}$ above a background RM of +147 rad m$^{-2}$. We discuss two forms of a simple shell model intended to reproduce the magnitude of the observed RM as a function of distance from the center of the Rosette Nebula. The models represent different physical situations for the magnetic field within the shell of the nebula. The first assumes that there is an increase in the magnetic field strength and plasma density at the outer radius of the HII region, such as would be produced by a strong magnetohydrodynamic shock wave. The second model assumes that any increase in the RM is due solely to an increase in the density, and the Galactic magnetic field is unaffected in the shell. We employ a Bayesian analysis to distinguish between the two forms of the model.
We present a study of the line-of-sight magnetic fields in five large-diameter Galactic HII regions. Using the Faraday rotation of background polarized radio sources, as well as dust-corrected H-alpha surface brightness as a probe of electron density, we estimated the strength and orientation of the magnetic field along 93 individual sight-lines through the HII regions. Each of the HII regions displayed a coherent magnetic field. The magnetic field strength (line-of-sight component) in the regions ranges from 2 to 6 microgauss, which is similar to the typical magnetic field strength in the diffuse interstellar medium. We investigated the relationship between magnetic field strength and electron density in the 5 HII regions. The slope of magnetic field vs. density in the low-density regime (0.8 < n_e < 30 per cubic cm) is very slightly above zero. We also calculated the ratio of thermal to magnetic pressure, beta_th, for each data point, which fell in the range 1.01 < beta_th < 25. Finally, we studied the orientation of the magnetic field in the solar neighborhood (d < 1.1 kpc) using our data from 5 HII regions along with existing measurements of the line-of-sight magnetic field strength from polarized pulsars whose distances have been determined from their annual parallax. We identify a net direction for the magnetic field in the solar neighborhood, but find no evidence for a preferred vertical direction of the magnetic field above or below the Galactic plane.
RM Synthesis was recently developed as a new tool for the interpretation of polarized emission data in order to separate the contributions of different sources lying on the same line of sight. Until now the method was mainly applied to discrete sources in Faraday space (Faraday screens). Here we consider how to apply RM Synthesis to reconstruct the Faraday dispersion function, aiming at the further extraction of information concerning the magnetic fields of extended sources, e.g. galaxies. The main attention is given to two related novelties in the method, i.e. the symmetry argument in Faraday space and the wavelet technique. We give a relation between our method and the previous applications of RM Synthesis to point-like sources. We demonstrate that the traditional RM Synthesis for a point-like source indirectly implies a symmetry argument and, in this sense, can be considered as a particular case of the method presented here. Investigating the applications of RM Synthesis to polarization details associated with small-scale magnetic fields, we isolate an option which was not covered by the ideas of the Burn theory, i.e. using quantities averaged over small-scale fluctuations of magnetic field and electron density. We describe the contribution of small-scale fields in terms of Faraday dispersion and beam depolarization. We consider the complex polarization for RM Synthesis without any averaging over small-scale fluctuations of magnetic field and electron density and demonstrate that it allows us to isolate the contribution from small-scale field.
We present molecular line and 1.4 mm continuum observations towards five massive star forming regions at arcsecond resolution using the Submillimeter Array (SMA). We find that the warm molecular gas surrounding each HII region (as traced by SO_2 and OCS) appears to be undergoing bulk rotation. From the molecular line emission and thermal component of the continuum emission, we independently derived gas masses for each region which are consistent with each other. From the free-free component of the continuum emission we estimate the minimum stellar mass required to power the HII region and find that this mass, when added to the derived gas mass, is a significant fraction of the dynamical mass for that region.
Magnetic fields are ubiquitous and essential in star formation. In particular, their role in regulating formation of stars across diverse environments like HII regions needs to be well understood. In this study, we present magnetic field properties towards the S235 complex using near-infrared (NIR) $H$-band polarimetric observations, obtained with the Mimir and POLICAN instruments. We selected 375 background stars in the field through combination of Gaia distances and extinctions from NIR colors. The plane-of-sky (POS) magnetic field orientations inferred from starlight polarization angles reveal a curved morphology tracing the spherical shell of the HII region. The large-scale magnetic field traced by Planck is parallel to the Galactic plane. We identified 11 dense clumps using $1.1,mathrm{mm}$ dust emission, with masses between $33-525,rm M_odot$. The clump averaged POS magnetic field strengths were estimated to be between $36-121,mathrm{mu G}$, with a mean of ${sim}65,mathrm{mu G}$. The mass-to-flux ratios for the clumps are found to be sub-critical with turbulent Alfv{e}n Mach numbers less than 1, indicating a strongly magnetized region. The clumps show scaling of magnetic field strength vs density with a power-law index of $0.52pm0.07$, similar to ambipolar diffusion models. Our results indicate the S235 complex is a region where stellar feedback triggers new stars and the magnetic fields regulate the rate of new star formation.
On 2012 August 2, two CMEs (CME-1 and CME-2) erupted from the west limb of the Sun as viewed from Earth, and were observed in images from the white light coronagraphs on the SOHO and STEREO spacecraft. These events were also observed by the Very Large Array (VLA), which was monitoring the Sun at radio wavelengths, allowing time-dependent Faraday rotation observations to be made of both events. We use the white-light imaging and radio data to model the 3-D field geometry of both CMEs, assuming a magnetic flux rope geometry. For CME-2, we also consider 1 au in situ field measurements in the analysis, as this CME hits STEREO-A on August~6, making this the first CME with observational constraints from stereoscopic coronal imaging, radio Faraday rotation, and in situ plasma measurements combined. The imaging and in situ observations of CME-2 provide two clear predictions for the radio data; namely that VLA should observe positive rotation measures (RMs) when the radio line of sight first encounters the CME, and that the sign should reverse to negative within a couple hours. The initial positive RMs are in fact observed. The expected sign reversal is not, but the VLA data unfortunately end too soon to be sure of the significance of this discrepancy. We interpret an RM increase prior to the expected occultation time of the CME as a signature of a sheath region of deflected field ahead of the CME itself.