Do you want to publish a course? Click here

It Takes a Socio-Technical Ecosystem

51   0   0.0 ( 0 )
 Added by J. Yates Monteith
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

There are both technical and social issues regarding the design of sustainable scientific software. Scientists want continuously evolving systems that capture the most recent knowledge while developers and architects want sufficiently stable requirements to ensure correctness and efficiency. A socio-technical ecosystem provides the environment in which these issues can be traded off.



rate research

Read More

92 - Fabio Massacci 2021
In finance, leverage is the ratio between assets borrowed from others and ones own assets. A matching situation is present in software: by using free open-source software (FOSS) libraries a developer leverages on other peoples code to multiply the offered functionalities with a much smaller own codebase. In finance as in software, leverage magnifies profits when returns from borrowing exceed costs of integration, but it may also magnify losses, in particular in the presence of security vulnerabilities. We aim to understand the level of technical leverage in the FOSS ecosystem and whether it can be a potential source of security vulnerabilities. Also, we introduce two metrics change distance and change direction to capture the amount and the evolution of the dependency on third-party libraries. The application of the proposed metrics on 8494 distinct libra
150 - Hendrik Heuer 2021
At the latest since the advent of the Internet, disinformation and conspiracy theories have become ubiquitous. Recent examples like QAnon and Pizzagate prove that false information can lead to real violence. In this motivation statement for the Workshop on Human Aspects of Misinformation at CHI 2021, I explain my research agenda focused on 1. why people believe in disinformation, 2. how people can be best supported in recognizing disinformation, and 3. what the potentials and risks of different tools designed to fight disinformation are.
20 Questions (20Q) is a two-player game. One player is the answerer, and the other is a questioner. The answerer chooses an entity from a specified domain and does not reveal this to the other player. The questioner can ask at most 20 questions to the answerer to guess the entity. The answerer can reply to the questions asked by saying yes/no/maybe. In this paper, we propose a novel approach based on the knowledge graph for designing the 20Q game on Bollywood movies. The system assumes the role of the questioner and asks questions to predict the movie thought by the answerer. It uses a probabilistic learning model for template-based question generation and answers prediction. A dataset of interrelated entities is represented as a weighted knowledge graph, which updates as the game progresses by asking questions. An evolutionary approach helps the model to gain a better understanding of user choices and predicts the answer in fewer questions over time. Experimental results show that our model was able to predict the correct movie in less than 10 questions for more than half of the times the game was played. This kind of model can be used to design applications that can detect diseases by asking questions based on symptoms, improving recommendation systems, etc.
Metric learning involves learning a discriminative representation such that embeddings of similar classes are encouraged to be close, while embeddings of dissimilar classes are pushed far apart. State-of-the-art methods focus mostly on sophisticated loss functions or mining strategies. On the one hand, metric learning losses consider two or more examples at a time. On the other hand, modern data augmentation methods for classification consider two or more examples at a time. The combination of the two ideas is under-studied. In this work, we aim to bridge this gap and improve representations using mixup, which is a powerful data augmentation approach interpolating two or more examples and corresponding target labels at a time. This task is challenging because, unlike classification, the loss functions used in metric learning are not additive over examples, so the idea of interpolating target labels is not straightforward. To the best of our knowledge, we are the first to investigate mixing examples and target labels for deep metric learning. We develop a generalized formulation that encompasses existing metric learning loss functions and modify it to accommodate for mixup, introducing Metric Mix, or Metrix. We show that mixing inputs, intermediate representations or embeddings along with target labels significantly improves representations and outperforms state-of-the-art metric learning methods on four benchmark datasets.
Recent studies have revealed that neural network-based policies can be easily fooled by adversarial examples. However, while most prior works analyze the effects of perturbing every pixel of every frame assuming white-box policy access, in this paper we take a more restrictive view towards adversary generation - with the goal of unveiling the limits of a models vulnerability. In particular, we explore minimalistic attacks by defining three key settings: (1) black-box policy access: where the attacker only has access to the input (state) and output (action probability) of an RL policy; (2) fractional-state adversary: where only several pixels are perturbed, with the extreme case being a single-pixel adversary; and (3) tactically-chanced attack: where only significant frames are tactically chosen to be attacked. We formulate the adversarial attack by accommodating the three key settings and explore their potency on six Atari games by examining four fully trained state-of-the-art policies. In Breakout, for example, we surprisingly find that: (i) all policies showcase significant performance degradation by merely modifying 0.01% of the input state, and (ii) the policy trained by DQN is totally deceived by perturbation to only 1% frames.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا