No Arabic abstract
The Korea Invisible Mass Search (KIMS) collaboration has developed low-background NaI(Tl) crystals that are suitable for the direct detection of WIMP dark matter. With experience built on the KIMS-CsI programs, the KIMS-NaI experiment will consist of a 200~kg NaI(Tl) crystal array surrounded by layers of shielding structures and will be operated at the Yangyang underground laboratory. The goal is to provide an unambiguous test of the DAMA/LIBRAs annual modulation signature. Measurements of six prototype crystals show progress in the reduction of internal contaminations of radioisotopes. Based on our understanding of these measurements, we expect to achieve a background level in the final detector configuration that is less than 1~count/day/keV/kg for recoil energies around 2~keV. The annual modulation sensitivity for the KIMS-NaI experiment shows that an unambiguous 7$sigma$ test of the DAMA/LIBRA signature would be possible with a 600~kg$cdot$year exposure with this system.
KIMS-NaI is a direct detection experiment searching for Weakly Interacting Massive Particles (WIMP) via their scattering off of nuclei in a NaI(Tl) crystal. The KIMS-NaI collaboration has carried out tests of six crystals in the Yangyang underground laboratory in order to develope low-background NaI(Tl) crystals. Studies of internal backgrounds crystals have been performed with the goal of reducing backgrounds levels to 1 dru at 2 keV. Pulse shape discrimination (PSD) capabilities were also investigated for distinguishing between WIMP nuclear recoil signals and electron recoil backgrounds. The PSD analysis was applied to underground data with one low background NaI(Tl) detector and the evaluation of WIMP mass limit is ongoing.
The annual modulation signal observed by the DAMA experiment is a long-standing question in the community of dark matter direct detection. This necessitates an independent verification of its existence using the same detection technique. The COSINE-100 experiment has been operating with 106~kg of low-background NaI(Tl) detectors providing interesting checks on the DAMA signal. However, due to higher backgrounds in the NaI(Tl) crystals used in COSINE-100 relative to those used for DAMA, it was difficult to reach final conclusions. Since the start of COSINE-100 data taking in 2016, we also have initiated a program to develop ultra-pure NaI(Tl) crystals for COSINE-200, the next phase of the experiment. The program includes efforts of raw powder purification, ultra-pure NaI(Tl) crystal growth, and detector assembly techniques. After extensive research and development of NaI(Tl) crystal growth, we have successfully grown a few small-size (0.61$-$0.78 kg) thallium-doped crystals with high radio-purity. A high light yield has been achieved by improvements of our detector assembly technique. Here we report the ultra-pure NaI(Tl) detector developments at the Institute for Basic Science, Korea. The technique developed here will be applied to the production of NaI(Tl) detectors for the COSINE-200 experiment.
We report the measurement of muons and muon-induced phosphorescence in DM-Ice17, a NaI(Tl) direct detection dark matter experiment at the South Pole. Muon interactions in the crystal are identified by their observed pulse shape and large energy depositions. The measured muon rate in DM-Ice17 is 2.93 +/- 0.04 muons/crystal/day with a modulation amplitude of 12.3 +/- 1.7%, consistent with expectation. Following muon interactions, we observe long-lived phosphorescence in the NaI(Tl) crystals with a decay time of 5.5 +/- 0.5 s. The prompt energy deposited by a muon is correlated to the amount of delayed phosphorescence, the brightest of which consist of tens of millions of photons. These photons are distributed over tens of seconds with a rate and arrival timing that do not mimic a scintillation signal above 2 keVee. While the properties of phosphorescence vary among individual crystals, the annually-modulating signal observed by DAMA cannot be accounted for by phosphorescence with the characteristics observed in DM-Ice17.
We present the first search for a dark matter annual modulation signal in the Southern Hemisphere conducted with NaI(Tl) detectors, performed by the DM-Ice17 experiment. Nuclear recoils from dark matter interactions are expected to yield an annually modulated signal independent of location within the Earths hemispheres. DM-Ice17, the first step in the DM-Ice experimental program, consists of 17 kg of NaI(Tl) located at the South Pole under 2200 m.w.e. overburden of Antarctic glacial ice. Taken over 3.6 years for a total exposure of 60.8 kg yr, DM-Ice17 data are consistent with no modulation in the energy range of 4-20 keV, providing the strongest limits on weakly interacting massive particle dark matter from a direct detection experiment located in the Southern Hemisphere. The successful deployment and stable long-term operation of DM-Ice17 establishes the South Pole ice as a viable location for future dark matter searches and in particular for a high-sensitivity NaI(Tl) dark matter experiment to directly test the DAMA/LIBRA claim of the observation of dark matter.
The scintillation light output of a pure and a Thallium doped Sodium Iodide (NaI) crystal under irradiation with 5.486MeV alpha -particles has been measured over a temperature range from 1.7K to 300K. Estimates of the decay time constant at three selected temperatures are given. For pure NaI an increase in light yield towards low temperatures could be confirmed and measured at higher precision. For NaI(Tl) below 60K an increase in light output has been found.