Do you want to publish a course? Click here

Quantum Phase Estimation Algorithm for Finding Polynomial Roots

120   0   0.0 ( 0 )
 Added by Pruet Kalasuwan
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum algorithm is an algorithm for solving mathematical problems using quantum systems encoded as information, which is found to outperform classical algorithms in some specific cases. The objective of this study is to develop a quantum algorithm for finding the roots of nth degree polynomials where n is any positive integer. In classical algorithm, the resources required for solving this problem increase drastically when n increases and it would be impossible to practically solve the problem when n is large. It was found that any polynomial can be rearranged into a corresponding companion matrix, whose eigenvalues are roots of the polynomial. This leads to a possibility to perform a quantum algorithm where the number of computational resources increase as a polynomial of n. In this study, we construct a quantum circuit representing the companion matrix and use eigenvalue estimation technique to find roots of polynomial.



rate research

Read More

We consider the number of quantum queries required to determine the coefficients of a degree-d polynomial over GF(q). A lower bound shown independently by Kane and Kutin and by Meyer and Pommersheim shows that d/2+1/2 quantum queries are needed to solve this problem with bounded error, whereas an algorithm of Boneh and Zhandry shows that d quantum queries are sufficient. We show that the lower bound is achievable: d/2+1/2 quantum queries suffice to determine the polynomial with bounded error. Furthermore, we show that d/2+1 queries suffice to achieve probability approaching 1 for large q. These upper bounds improve results of Boneh and Zhandry on the insecurity of cryptographic protocols against quantum attacks. We also show that our algorithms success probability as a function of the number of queries is precisely optimal. Furthermore, the algorithm can be implemented with gate complexity poly(log q) with negligible decrease in the success probability. We end with a conjecture about the quantum query complexity of multivariate polynomial interpolation.
For two unknown quantum states $rho$ and $sigma$ in an $N$-dimensional Hilbert space, computing their fidelity $F(rho,sigma)$ is a basic problem with many important applications in quantum computing and quantum information, for example verification and characterization of the outputs of a quantum computer, and design and analysis of quantum algorithms. In this Letter, we propose a quantum algorithm that solves this problem in $text{poly}(log (N), r)$ time, where $r$ is the lower rank of $rho$ and $sigma$. This algorithm exhibits an exponential improvement over the best-known algorithm (based on quantum state tomography) in $text{poly}(N, r)$ time.
Unitary Fourier transform lies at the core of the multitudinous computational and metrological algorithms. Here we show experimentally how the unitary Fourier transform-based phase estimation protocol, used namely in quantum metrology, can be translated into the classical linear optical framework. The developed setup made of beam splitters, mirrors and phase shifters demonstrates how the classical coherence, similarly to the quantum coherence, poses a resource for obtaining information about the measurable physical quantities. Our study opens route to the reliable implementation of the small-scale unitary algorithms on path-encoded qudits, thus establishing an easily accessible platform for unitary computation.
We develop an efficient quantum implementation of an important signal processing algorithm for line spectral estimation: the matrix pencil method, which determines the frequencies and damping factors of signals consisting of finite sums of exponentially damped sinusoids. Our algorithm provides a quantum speedup in a natural regime where the sampling rate is much higher than the number of sinusoid components. Along the way, we develop techniques that are expected to be useful for other quantum algorithms as well - consecutive phase estimations to efficiently make products of asymmetric low rank matrices classically accessible and an alternative method to efficiently exponentiate non-Hermitian matrices. Our algorithm features an efficient quantum-classical division of labor: The time-critical steps are implemented in quantum superposition, while an interjacent step, requiring only exponentially few parameters, can operate classically. We show that frequencies and damping factors can be obtained in time logarithmic in the number of sampling points, exponentially faster than known classical algorithms.
Let $H$ be a fixed $k$-vertex graph with $m$ edges and minimum degree $d >0$. We use the learning graph framework of Belovs to show that the bounded-error quantum query complexity of determining if an $n$-vertex graph contains $H$ as a subgraph is $O(n^{2-2/k-t})$, where $ t = max{frac{k^2- 2(m+1)}{k(k+1)(m+1)}, frac{2k - d - 3}{k(d+1)(m-d+2)}}$. The previous best algorithm of Magniez et al. had complexity $widetilde O(n^{2-2/k})$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا