Do you want to publish a course? Click here

Multilane driven diffusive systems

122   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider networks made of parallel lanes along which particles hop according to driven diffusive dynamics. The particles also hop transversely from lane to lane, hence indirectly coupling their longitudinal dynamics. We present a general method for constructing the phase diagram of these systems which reveals that in many cases their physics reduce to that of single-lane systems. The reduction to an effective single-lane description legitimizes, for instance, the use of a single TASEP to model the hopping of molecular motors along the many tracks of a single microtubule. Then, we show how, in quasi-2D settings, new phenomena emerge due to the presence of non-zero transverse currents, leading, for instance, to strong `shear localisation along the network.



rate research

Read More

We consider a large class of two-lane driven diffusive systems in contact with reservoirs at their boundaries and develop a stability analysis as a method to derive the phase diagrams of such systems. We illustrate the method by deriving phase diagrams for the asymmetric exclusion process coupled to various second lanes: a diffusive lane; an asymmetric exclusion process with advection in the same direction as the first lane, and an asymmetric exclusion process with advection in the opposite direction. The competing currents on the two lanes naturally lead to a very rich phenomenology and we find a variety of phase diagrams. It is shown that the stability analysis is equivalent to an `extremal current principle for the total current in the two lanes. We also point to classes of models where both the stability analysis and the extremal current principle fail.
When an extended system is coupled at its opposite boundaries to two reservoirs at different temperatures or chemical potentials, it cannot achieve a global thermal equilibrium and is instead driven to a set of current-carrying nonequilibrium states. Despite the broad relevance of such a scenario to metallic systems, there have been limited investigations of the entanglement structure of the resulting long-time states, in part, due to the fundamental difficulty in solving realistic models for disordered, interacting electrons. We investigate this problem by carefully analyzing two toy models for coherent quantum transport of diffusive fermions: the celebrated three-dimensional, noninteracting Anderson model and a class of random quantum circuits acting on a chain of qubits, which exactly maps to a diffusive, interacting fermion problem. Crucially, the random circuit model can also be tuned to have no interactions between the fermions, similar to the Anderson model. We show that the long-time states of driven noninteracting fermions exhibit volume-law mutual information and entanglement, both for our random circuit model and for the nonequilibrium steady-state of the Anderson model. With interactions, the random circuit model is quantum chaotic and approaches local equilibrium, with only short-range entanglement. These results provide a generic picture for the emergence of local equilibrium in current-driven quantum-chaotic systems, and also provide examples of stable, highly-entangled many-body states out of equilibrium. We discuss experimental techniques to probe these effects in low-temperature mesoscopic wires or ultracold atomic gases.
In this paper we present a self-contained macroscopic description of diffusive systems interacting with boundary reservoirs and under the action of external fields. The approach is based on simple postulates which are suggested by a wide class of microscopic stochastic models where they are satisfied. The description however does not refer in any way to an underlying microscopic dynamics: the only input required are transport coefficients as functions of thermodynamic variables, which are experimentally accessible. The basic postulates are local equilibrium which allows a hydrodynamic description of the evolution, the Einstein relation among the transport coefficients, and a variational principle defining the out of equilibrium free energy. Associated to the variational principle there is a Hamilton-Jacobi equation satisfied by the free energy, very useful for concrete calculations. Correlations over a macroscopic scale are, in our scheme, a generic property of nonequilibrium states. Correlation functions of any order can be calculated from the free energy functional which is generically a non local functional of thermodynamic variables. Special attention is given to the notion of equilibrium state from the standpoint of nonequilibrium.
Computing the stochastic entropy production associated with the evolution of a stochastic dynamical system is a well-established problem. In a small number of cases such as the Ornstein-Uhlenbeck process, of which we give a complete exposition, the distribution of entropy production can be obtained analytically, but in general it is much harder. A recent development in solving the Fokker-Planck equation, in which the solution is written as a product of positive functions, enables the distribution to be obtained approximately, with the assistance of simple numerical techniques. Using examples in one and higher dimension, we demonstrate how such a framework is very convenient for the computation of stochastic entropy production in diffusion processes.
80 - Pedro L. Garrido 2021
We study the behavior of stationary non-equilibrium two-body correlation functions for Diffusive Systems with equilibrium reference states (DSe). A DSe is described at the mesoscopic level by $M$ locally conserved continuum fields that evolve through coupled Langevin equations with white noises. The dynamic is designed such that the system may reach equilibrium states for a set of boundary conditions. In this form, just by changing the equilibrium boundary conditions, we make the system driven to a non-equilibrium stationary state. We decompose the correlations in a known local equilibrium part and another one that contains the non-equilibrium behavior and that we call {it correlations excess} $bar C(x,z)$. We formally derive the differential equations for $bar C$. We define a perturbative expansion around the equilibrium state to solve them order by order. We show that the $bar C$s first-order expansion, $bar C^{(1)}$, is always zero for the unique field case, $M=1$. Moreover $bar C^{(1)}$ is always long-range or zero when $M>1$. Surprisingly we show that their associated fluctuations, the space integrals of $bar C^{(1)}$, are always zero. Therefore, the fluctuations are dominated by the local equilibrium behavior up to second order in the perturbative expansion around the equilibrium. We derive the behaviors of $bar C^{(1)}$ in real space for dimensions $d=1$ and $2$ explicitly, and we apply the analysis to a generic $M=2$ case and, in particular, to a hydrodynamic model where we explicitly compute the two first perturbative orders, $bar C^{(1),(2)}$, and its associated fluctuations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا