We study the matter bispectrum of the large-scale structure by comparing different perturbative and phenomenological models with measurements from $N$-body simulations obtained with a modal bispectrum estimator. Using shape and amplitude correlators, we directly compare simulated data with theoretical models over the full three-dimensional domain of the bispectrum, for different redshifts and scales. We review and investigate the main perturbative methods in the literature that predict the one-loop bispectrum: standard perturbation theory, effective field theory, resummed Lagrangian and renormalised perturbation theory, calculating the latter also at two loops for some triangle configurations. We find that effective field theory (EFT) succeeds in extending the range of validity furthest into the mildly nonlinear regime, albeit at the price of free extra parameters requiring calibration on simulations. For the more phenomenological halo model, we confirm that despite its validity in the deeply nonlinear regime it has a deficit of power on intermediate scales, which worsens at higher redshifts; this issue is ameliorated, but not solved, by combined halo-perturbative models. We show from simulations that in this transition region there is a strong squeezed bispectrum component that is significantly underestimated in the halo model at earlier redshifts. We thus propose a phenomenological method for alleviating this deficit, which we develop into a simple phenomenological three-shape benchmark model based on the three fundamental shapes we have obtained from studying the halo model. When calibrated on the simulations, this three-shape benchmark model accurately describes the bispectrum on all scales and redshifts considered, providing a prototype bispectrum HALOFIT-like methodology that could be used to describe and test parameter dependencies.