Do you want to publish a course? Click here

QCD thermodynamics with continuum extrapolated dynamical overlap fermions

97   0   0.0 ( 0 )
 Added by Sandor D. Katz
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We study the finite temperature transition in QCD with two flavors of dynamical fermions at a pseudoscalar pion mass of about 350 MeV. We use lattices with temporal extent of $N_t$=8, 10 and 12. For the first time in the literature a continuum limit is carried out for several observables with dynamical overlap fermions. These findings are compared with results obtained within the staggered fermion formalism at the same pion masses and extrapolated to the continuum limit. The presented results correspond to fixed topology and its effect is studied in the staggered case. Nice agreement is found between the overlap and staggered results.

rate research

Read More

259 - S. Borsanyi , S. Durr , Z. Fodor 2012
QCD thermodynamics is considered using Wilson fermions in the fixed scale approach. The temperature dependence of the renormalized chiral condensate, quark number susceptibility and Polyakov loop is measured at four lattice spacings allowing for a controlled continuum limit. The light quark masses are fixed to heavier than physical values in this first study. Finite volume effects are ensured to be negligible by using approriately large box sizes. The final continuum results are compared with staggered fermion simulations performed in the fixed N_t approach. The same continuum renormalization conditions are used in both approaches and the final results agree perfectly.
We continue our investigation of 2+1 flavor QCD thermodynamics using dynamical Wilson fermions in the fixed scale approach. Two additional pion masses, approximately 440 MeV and 285 MeV, are added to our previous work at 545 MeV. The simulations were performed at 3 or 4 lattice spacings at each pion mass. The renormalized chiral condensate, strange quark number susceptibility and Polyakov loop is obtained as a function of the temperature and we observe a decrease in the light chiral pseudo-critical temperature as the pion mass is lowered while the pseudo-critical temperature associated with the strange quark number susceptibility or the Polyakov loop is only mildly sensitive to the pion mass. These findings are in agreement with previous continuum results obtained in the staggered formulation.
154 - S. Borsanyi , Y. Delgado , S. Durr 2012
We study QCD thermodynamics using two flavors of dynamical overlap fermions with quark masses corresponding to a pion mass of 350 MeV. We determine several observables on N_t=6 and 8 lattices. All our runs are performed with fixed global topology. Our results are compared with staggered ones and a nice agreement is found.
We perform dynamical QCD simulations with $n_f=2$ overlap fermions by hybrid Monte-Carlo method on $6^4$ to $8^3times 16$ lattices. We study the problem of topological sector changing. A new method is proposed which works without topological sector changes. We use this new method to determine the topological susceptibility at various quark masses.
We study the deconfinement transition in two-flavour lattice QCD with dynamical overlap fermions. Our simulations have been carried out on a $16^3 times 6$ lattice at a pion mass around 500 MeV with a special HMC algorithm without any approximation such as fixed topology. We consider several temperatures from 220 MeV which is close to the deconfinement to 280 MeV which is above it. The dependence of the Polyakov loop, the chiral condensate, the Dirac spectra and the connected part of chiral susceptibility on the inverse gauge coupling has been studied. Our data indicates that the transition point lies between $beta = 7.6$ and $beta = 8.1$, but a more precise determination is not possible with our present statistics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا