Do you want to publish a course? Click here

Finite element schemes for a class of nonlocal parabolic systems with moving boundaries

371   0   0.0 ( 0 )
 Added by Jose Duque
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The aim of this paper is to establish convergence, properties and error bounds for the fully discrete solutions of a class of nonlinear systems of reaction-diffusion nonlocal type with moving boundaries, using the finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with a moving finite element method are investigated.



rate research

Read More

The aim of this paper is to establish the convergence and error bounds to the fully discrete solution for a class of nonlinear systems of reaction-diffusion nonlocal type with moving boundaries, using a linearized Crank-Nicolson-Galerkin finite element method with polynomial approximations of any degree. A coordinate transformation which fixes the boundaries is used. Some numerical tests to compare our Matlab code with some existing moving finite elements methods are investigated.
The aim of this paper is the numerical study of a class of nonlinear nonlocal degenerate parabolic equations. The convergence and error bounds of the solutions are proved for a linearized Crank-Nicolson-Galerkin finite element method with polynomial approximations of degree $kgeq 1$. Some explicit solutions are obtained and used to test the implementation of the method in Matlab environment.
154 - R. Eymard 2020
In this paper, we present a class of finite volume schemes for incompressible flow problems. The unknowns are collocated at the center of the control volumes, and the stability of the schemes is obtained by adding to the mass balance stabilization terms involving the pressure jumps across the edges of the mesh.
In this paper we design efficient quadrature rules for finite element discretizations of nonlocal diffusion problems with compactly supported kernel functions. Two of the main challenges in nonlocal modeling and simulations are the prohibitive computational cost and the nontrivial implementation of discretization schemes, especially in three-dimensional settings. In this work we circumvent both challenges by introducing a parametrized mollifying function that improves the regularity of the integrand, utilizing an adaptive integration technique, and exploiting parallelization. We first show that the mollified solution converges to the exact one as the mollifying parameter vanishes, then we illustrate the consistency and accuracy of the proposed method on several two- and three-dimensional test cases. Furthermore, we demonstrate the good scaling properties of the parallel implementation of the adaptive algorithm and we compare the proposed method with recently developed techniques for efficient finite element assembly.
106 - Qiang Du , Lili Ju , Xiao Li 2020
The ubiquity of semilinear parabolic equations has been illustrated in their numerous applications ranging from physics, biology, to materials and social sciences. In this paper, we consider a practically desirable property for a class of semilinear parabolic equations of the abstract form $u_t=mathcal{L}u+f[u]$ with $mathcal{L}$ being a linear dissipative operator and $f$ being a nonlinear operator in space, namely a time-invariant maximum bound principle, in the sense that the time-dependent solution $u$ preserves for all time a uniform pointwise bound in absolute value imposed by its initial and boundary conditions. We first study an analytical framework for some sufficient conditions on $mathcal{L}$ and $f$ that lead to such a maximum bound principle for the time-continuous dynamic system of infinite or finite dimensions. Then, we utilize a suitable exponential time differencing approach with a properly chosen generator of contraction semigroup to develop first- and second-order accurate temporal discretization schemes, that satisfy the maximum bound principle unconditionally in the time-discrete setting. Error estimates of the proposed schemes are derived along with their energy stability. Extensions to vector- and matrix-valued systems are also discussed. We demonstrate that the abstract framework and analysis techniques developed here offer an effective and unified approach to study the maximum bound principle of the abstract evolution equation that cover a wide variety of well-known models and their numerical discretization schemes. Some numerical experiments are also carried out to verify the theoretical results.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا