Do you want to publish a course? Click here

Concentration of Measure Inequalities and Their Communication and Information-Theoretic Applications

207   0   0.0 ( 0 )
 Added by Igal Sason
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

During the last two decades, concentration of measure has been a subject of various exciting developments in convex geometry, functional analysis, statistical physics, high-dimensional statistics, probability theory, information theory, communications and coding theory, computer science, and learning theory. One common theme which emerges in these fields is probabilistic stability: complicated, nonlinear functions of a large number of independent or weakly dependent random variables often tend to concentrate sharply around their expected values. Information theory plays a key role in the derivation of concentration inequalities. Indeed, both the entropy method and the approach based on transportation-cost inequalities are two major information-theoretic paths toward proving concentration. This brief survey is based on a recent monograph of the authors in the Foundations and Trends in Communications and Information Theory (online available at http://arxiv.org/pdf/1212.4663v8.pdf), and a tutorial given by the authors at ISIT 2015. It introduces information theorists to three main techniques for deriving concentration inequalities: the martingale method, the entropy method, and the transportation-cost inequalities. Some applications in information theory, communications, and coding theory are used to illustrate the main ideas.



rate research

Read More

A communication setup is considered where a transmitter wishes to convey a message to a receiver and simultaneously estimate the state of that receiver through a common waveform. The state is estimated at the transmitter by means of generalized feedback, i.e., a strictly causal channel output, and the known waveform. The scenario at hand is motivated by joint radar and communication, which aims to co-design radar sensing and communication over shared spectrum and hardware. For the case of memoryless single receiver channels with i.i.d. time-varying state sequences, we fully characterize the capacity-distortion tradeoff, defined as the largest achievable rate below which a message can be conveyed reliably while satisfying some distortion constraints on state sensing. We propose a numerical method to compute the optimal input that achieves the capacity-distortion tradeoff. Then, we address memoryless state-dependent broadcast channels (BCs). For physically degraded BCs with i.i.d. time-varying state sequences, we characterize the capacity-distortion tradeoff region as a rather straightforward extension of single receiver channels. For general BCs, we provide inner and outer bounds on the capacity-distortion region, as well as a sufficient condition when this capacity-distortion region is equal to the product of the capacity region and the set of achievable distortions. A number of illustrative examples demonstrates that the optimal co-design schemes outperform conventional schemes that split the resources between sensing and communication.
Given a probability measure $mu$ over ${mathbb R}^n$, it is often useful to approximate it by the convex combination of a small number of probability measures, such that each component is close to a product measure. Recently, Ronen Eldan used a stochastic localization argument to prove a general decomposition result of this type. In Eldans theorem, the `number of components is characterized by the entropy of the mixture, and `closeness to product is characterized by the covariance matrix of each component. We present an elementary proof of Eldans theorem which makes use of an information theory (or estimation theory) interpretation. The proof is analogous to the one of an earlier decomposition result known as the `pinning lemma.
119 - Nihat Ay , Wolfgang Lohr 2016
We consider a general model of the sensorimotor loop of an agent interacting with the world. This formalises Uexkulls notion of a emph{function-circle}. Here, we assume a particular causal structure, mechanistically described in terms of Markov kernels. In this generality, we define two $sigma$-algebras of events in the world that describe two respective perspectives: (1) the perspective of an external observer, (2) the intrinsic perspective of the agent. Not all aspects of the world, seen from the external perspective, are accessible to the agent. This is expressed by the fact that the second $sigma$-algebra is a subalgebra of the first one. We propose the smaller one as formalisation of Uexkulls emph{Umwelt} concept. We show that, under continuity and compactness assumptions, the global dynamics of the world can be simplified without changing the internal process. This simplification can serve as a minimal world model that the system must have in order to be consistent with the internal process.
259 - Igal Sason 2019
This paper is focused on derivations of data-processing and majorization inequalities for $f$-divergences, and their applications in information theory and statistics. For the accessibility of the material, the main results are first introduced without proofs, followed by exemplifications of the theorems with further related analytical results, interpretations, and information-theoretic applications. One application refers to the performance analysis of list decoding with either fixed or variable list sizes; some earlier bounds on the list decoding error probability are reproduced in a unified way, and new bounds are obtained and exemplified numerically. Another application is related to a study of the quality of approximating a probability mass function, induced by the leaves of a Tunstall tree, by an equiprobable distribution. The compression rates of finite-length Tunstall codes are further analyzed for asserting their closeness to the Shannon entropy of a memoryless and stationary discrete source. Almost all the analysis is relegated to the appendices, which form a major part of this manuscript.
146 - Rami Atar , Neri Merhav 2014
A well-known technique in estimating probabilities of rare events in general and in information theory in particular (used, e.g., in the sphere-packing bound), is that of finding a reference probability measure under which the event of interest has probability of order one and estimating the probability in question by means of the Kullback-Leibler divergence. A method has recently been proposed in [2], that can be viewed as an extension of this idea in which the probability under the reference measure may itself be decaying exponentially, and the Renyi divergence is used instead. The purpose of this paper is to demonstrate the usefulness of this approach in various information-theoretic settings. For the problem of channel coding, we provide a general methodology for obtaining matched, mismatched and robust error exponent bounds, as well as new results in a variety of particular channel models. Other applications we address include rate-distortion coding and the problem of guessing.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا