Do you want to publish a course? Click here

Topological susceptibility from $N_f=2+1+1$ lattice QCD at nonzero temperature

184   0   0.0 ( 0 )
 Added by M. Muller-Preussker
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We present results for the topological susceptibility at nonzero temperature obtained from lattice QCD with four dynamical quark flavours. We apply different smoothing methods, including gradient Wilson flow and over--improved cooling, before calculating the susceptibility. It is shown that the considered smoothing techniques basically agree among each other, and that there are simple scaling relations between flow time and the number of cooling/smearing steps. The topological susceptibility exhibits a surprisingly slow decrease at high temperature.



rate research

Read More

73 - S. Aoki 2017
We study the topological charge in $N_f=2$ QCD at finite temperature using Mobius domain-wall fermions. The susceptibility $chi_t$ of the topological charge defined either by the index of overlap Dirac operator or a gluonic operator is investigated at several values of temperature $T (>T_c)$ varying the quark mass. A strong suppression of the susceptibility is observed below a certain value of the quark mass. The relation with the restoration of $U_A(1)$ is discussed.
We compute various (generalized) isovector charges of the octet baryons. These include $g_A$, $g_T$ and $g_S$ as well as the unpolarized, polarized and transversity parton distribution function (PDF) momentum fractions $langle xrangle_{u^+-d^+}$, $langle xrangle_{Delta u^--Delta d^-}$ and $langle xrangle_{delta u^+-delta ^+}$. The simulations are carried out on a subset of the (isospin symmetric) $N_f=2+1$ flavour Coordinated Lattice Simulations (CLS) gauge ensembles with lattice spacings ranging from $aapprox 0.086,$fm down to $aapprox 0.050,$fm. First results on the breaking of flavour symmetry and the low energy constants $F$ and $D$ are presented. While SU(3) flavour symmetry violations are found to be sizeable for $g_A=langle 1rangle_{Delta u^+-Delta d^+}$, these are quite small for $g_T=langle 1rangle_{delta u^--delta d^-}$ and $langle xrangle_{u^+-d^+}$.
We present results for the interaction of two kaons at maximal isospin. The calculation is based on 2+1+1 flavour gauge configurations generated by the ETM Collaboration (ETMC) featuring pion masses ranging from about 230 MeV to 450 MeV at three values of the lattice spacing. The elastic scattering length $a_0^{I=1}$ is calculated at several values of the bare strange quark and light quark masses. We find $M_K a_0 =-0.397(11)(_{-8}^{+0})$ as the result of a chiral and continuum extrapolation to the physical point. This number is compared to other lattice results.
In this paper we explore the computation of topological susceptibility and $eta$ meson mass in $N_f=2$ flavor QCD using lattice techniques with physical value of the pion mass as well as larger pion mass values. We observe that the physical point can be reached without a significant increase in the statistical noise. The mass of the $eta$ meson can be obtained from both fermionic two point functions and topological charge density correlation functions, giving compatible results. With the pion mass dependence of the $eta$ mass being flat we arrive at $M_{eta}= 772(18) mathrm{MeV}$ without an explicit continuum limit. For the topological susceptibility we observe a linear dependence on $M_pi^2$, however, with an additional constant stemming from lattice artifacts.
We present an investigation of the Rho-meson from Nf=2+1+1 flavour lattice QCD. The calculation is performed based on gauge configuration ensembles produced by the ETM collaboration with three lattice spacing values and pion masses ranging from 230 MeV to 500 MeV. Applying the Luscher method phase shift curves are determined for all ensembles separately. Assuming a Breit-Wigner form, the Rho-meson mass and width are determined by a fit to these phase shift curves. Mass and width combined are then extrapolated to the chiral limit, while lattice artefacts are not detectable within our statistical uncertainties. For the Rho-meson mass extrapolated to the physical point we find good agreement with experiment. The corresponding decay width differs by about two standard deviations from the experimental value.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا