Do you want to publish a course? Click here

Gradient stability for the Sobolev inequality: the case $pgeq 2$

64   0   0.0 ( 0 )
 Added by Robin Neumayer
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We prove a strong form of the quantitative Sobolev inequality in $mathbb{R}^n$ for $pgeq 2$, where the deficit of a function $uin dot W^{1,p} $ controls $| abla u - abla v|_{L^p}$ for an extremal function $v$ in the Sobolev inequality.



rate research

Read More

93 - Robin Neumayer 2019
In this note, we establish a strong form of the quantitive Sobolev inequality in Euclidean space for $p in (1,n)$. Given any function $u in dot W^{1,p}(mathbb{R}^n)$, the gap in the Sobolev inequality controls $| abla u - abla v|_{p}$, where $v$ is an extremal function for the Sobolev inequality.
We consider a version of the fractional Sobolev inequality in domains and study whether the best constant in this inequality is attained. For the half-space and a large class of bounded domains we show that a minimizer exists, which is in contrast to the classical Sobolev inequalities in domains.
127 - Jingbo Dou , Meijun Zhu 2013
The classical sharp Hardy-Littlewood-Sobolev inequality states that, for $1<p, t<infty$ and $0<lambda=n-alpha <n$ with $ 1/p +1 /t+ lambda /n=2$, there is a best constant $N(n,lambda,p)>0$, such that $$ |int_{mathbb{R}^n} int_{mathbb{R}^n} f(x)|x-y|^{-lambda} g(y) dx dy|le N(n,lambda,p)||f||_{L^p(mathbb{R}^n)}||g||_{L^t(mathbb{R}^n)} $$ holds for all $fin L^p(mathbb{R}^n), gin L^t(mathbb{R}^n).$ The sharp form is due to Lieb, who proved the existence of the extremal functions to the inequality with sharp constant, and computed the best constant in the case of $p=t$ (or one of them is 2). Except that the case for $pin ((n-1)/n, n/alpha)$ (thus $alpha$ may be greater than $n$) was considered by Stein and Weiss in 1960, there is no other result for $alpha>n$. In this paper, we prove that the reversed Hardy-Littlewood-Sobolev inequality for $0<p, t<1$, $lambda<0$ holds for all nonnegative $fin L^p(mathbb{R}^n), gin L^t(mathbb{R}^n).$ For $p=t$, the existence of extremal functions is proved, all extremal functions are classified via the method of moving sphere, and the best constant is computed.
In various analytical contexts, it is proved that a weak Sobolev inequality implies a doubling property for the underlying measure.
261 - Jingbo Dou , Meijun Zhu 2013
There are at least two directions concerning the extension of classical sharp Hardy-Littlewood-Sobolev inequality: (1) Extending the sharp inequality on general manifolds; (2) Extending it for the negative exponent $lambda=n-alpha$ (that is for the case of $alpha>n$). In this paper we confirm the possibility for the extension along the first direction by establishing the sharp Hardy-Littlewood-Sobolev inequality on the upper half space (which is conformally equivalent to a ball). The existences of extremal functions are obtained; And for certain range of the exponent, we classify all extremal functions via the method of moving sphere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا