Do you want to publish a course? Click here

An attractive critical point from weak antilocalization on fractals

90   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report a new attractive critical point occurring in the Anderson localization scaling flow of symplectic models on fractals. The scaling theory of Anderson localization predicts that in disordered symplectic two-dimensional systems weak antilocalization effects lead to a metal-insulator transition. This transition is characterized by a repulsive critical point above which the system becomes metallic. Fractals possess a non-integer scaling of conductance in the classical limit which can be continuously tuned by changing the fractal structure. We demonstrate that in disordered symplectic Hamiltonians defined on fractals with classical conductance scaling $g sim L^{-varepsilon}$, for $0 < varepsilon < beta_mathrm{max} approx 0.15$, the metallic phase is replaced by a critical phase with a scale invariant conductance dependent on the fractal dimensionality. Our results show that disordered fractals allow an explicit construction and verification of the $varepsilon$ expansion.



rate research

Read More

Recently, it has been theoretically predicted that Cd3As2 is a three dimensional Dirac material, a new topological phase discovered after topological insulators, which exhibits a linear energy dispersion in the bulk with massless Dirac fermions. Here, we report on the low-temperature magnetoresistance measurements on a ~50nm-thick Cd3As2 film. The weak antilocalization under perpendicular magnetic field is discussed based on the two-dimensional Hikami-Larkin-Nagaoka (HLN) theory. The electron-electron interaction is addressed as the source of the dephasing based on the temperature-dependent scaling behavior. The weak antilocalization can be also observed while the magnetic field is parallel to the electric field due to the strong interaction between the different conductance channels in this quasi-two-dimensional film.
We show that weak antilocalization by disorder competes with resonant Andreev reflection from a Majorana zero-mode to produce a zero-voltage conductance peak of order e^2/h in a superconducting nanowire. The phase conjugation needed for quantum interference to survive a disorder average is provided by particle-hole symmetry - in the absence of time-reversal symmetry and without requiring a topologically nontrivial phase. We identify methods to distinguish the Majorana resonance from the weak antilocalization effect.
The anomalous magnetoresistance caused by the weak antilocalization (WAL) effects in 200-nm HgTe films is experimentally studied. The film is a high quality 3D topological insulator with much stronger spatial separation of surface states than in previously studied thinner HgTe structures. However, in contrast to that films, the system under study is characterized by a reduced partial strain resulting in an almost zero bulk energy gap. It has been shown that at all positions of the Fermi level the system exhibits a WAL conductivity correction superimposed on classical parabolic magnetoresistance. Since high mobility of carriers, the analysis of the obtained results was performed using a ballistic WAL theory. The maximum of the WAL conductivity correction amplitude was found at a Fermi level position near the bulk energy gap indicating to full decoupling of the surface carriers in these conditions. The WAL amplitude monotonously decreases when the density of either bulk electrons or holes increases that results from the increasing coupling between surface and bulk carriers.
We study the weak antilocalization (WAL) effect in the magnetoresistance of narrow HgTe wires fabricated in quantum wells (QWs) with normal and inverted band ordering. Measurements at different gate voltages indicate that the WAL is only weakly affected by Rashba spin-orbit splitting and persists when the Rashba splitting is about zero. The WAL signal in wires with normal band ordering is an order of magnitude smaller than for inverted ones. These observations are attributed to a Dirac-like topology of the energy bands in HgTe QWs. From the magnetic-field and temperature dependencies we extract the dephasing lengths and band Berry phases. The weaker WAL for samples with a normal band structure can be explained by a non-universal Berry phase which always exceeds pi, the characteristic value for gapless Dirac fermions.
Weak antilocalization measurements has become a standard tool for studying quantum coherent transport in topological materials. It is often used to extract information about number of conducting channels and dephasing length of topological surface states. We study thin films of prototypical topological crystalline insulator SnTe. To access microscopic characteristic of these states we employ a model developed by Tkachov and Hankiewicz, [Physical Review B 84, 035444]. Using this model the spatial decay of the topological states is obtained from measurements of quantum corrections to the conductivity in perpendicular and parallel configurations of the magnetic field. Within this model we find interaction between two topological boundaries which results in scaling of the spatial decay with the film thickness. We attribute this behavior to bulk reservoir which mediates interactions by scattering events without phase breaking of topological carriers.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا