Do you want to publish a course? Click here

Stochastic Calculus with respect to G-Brownian Motion Viewed through Rough Paths

69   0   0.0 ( 0 )
 Added by Huilin Zhang
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

In this paper, we study rough path properties of stochastic integrals of It^{o}s type and Stratonovichs type with respect to $G$-Brownian motion. The roughness of $G$-Brownian Motion is estimated and then the pathwise Norris lemma in $G$-framework is obtained.



rate research

Read More

84 - Hanwu Li , Yongsheng Song 2019
In this paper, we study the reflected backward stochastic differential equations driven by G-Brownian motion with two reflecting obstacles, which means that the solution lies between two prescribed processes. A new kind of approximate Skorohod condition is proposed to derive the uniqueness and existence of the solutions. The uniqueness can be proved by a priori estimates and the existence is obtained via a penalization method.
In this paper, we investigate suffcient and necessary conditions for the comparison theorem of neutral stochastic functional differential equations driven by G-Brownian motion (G-NSFDE). Moreover, the results extend the ones in the linear expectation case [1] and nonlinear expectation framework [8].
In this paper we study the stochastic differential equations driven by $G$-Brownian motion ($G$-SDEs for short). We extend the notion of conditional $G$-expectation from deterministic time to the more general optional time situation. Then, via this conditional expectation, we develop the strong Markov property for $G$-SDEs. In particular, we obtain the strong Markov property for $G$-Brownian motion. Some applications including the reflection principle for $G$-Brownian motion are also provided.
264 - Hanwu Li , Shige Peng 2017
In this paper, we study the reflected backward stochastic differential equation driven by G-Brownian motion (reflected G-BSDE for short) with an upper obstacle. The existence is proved by approximation via penalization. By using a variant comparison theorem, we show that the solution we constructed is the largest one.
We introduce the space of rough paths with Sobolev regularity and the corresponding concept of controlled Sobolev paths. Based on these notions, we study rough path integration and rough differential equations. As main result, we prove that the solution map associated to differential equations driven by rough paths is a locally Lipschitz continuous map on the Sobolev rough path space for any arbitrary low regularity $alpha$ and integrability $p$ provided $alpha >1/p$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا