The CVS is composed of numerous interacting and dynamically regulated physiological subsystems which each generate measurable periodic components such that the CVS can itself be presented as a system of weakly coupled oscillators. The interactions between these oscillators generate a chaotic blood pressure waveform signal, where periods of apparent rhythmicity are punctuated by asynchronous behaviour. It is this variability which seems to characterise the normal state. We used a standard experimental data set for the purposes of analysis and modelling. Arterial blood pressure waveform data was collected from conscious mice instrumented with radiotelemetry devices over $24$ hours, at a $100$ Hz and $1$ kHz time base. During a $24$ hour period, these mice display diurnal variation leading to changes in the cardiovascular waveform. We undertook preliminary analysis of our data using Fourier transforms and subsequently applied a series of both linear and nonlinear mathematical approaches in parallel. We provide a minimalistic linear and nonlinear coupled oscillator model and employed spectral and Hilbert analysis as well as a phase plane analysis. This provides a route to a three way synergistic investigation of the original blood pressure data by a combination of physiological experiments, data analysis viz. Fourier and Hilbert transforms and attractor reconstructions, and numerical solutions of linear and nonlinear coupled oscillator models. We believe that a minimal model of coupled oscillator models that quantitatively describes the complex physiological data could be developed via such a method. Further investigations of each of these techniques will be explored in separate publications.