Symmetry and dynamics universality of supermetal in quantum chaos


Abstract in English

Chaotic systems exhibit rich quantum dynamical behaviors ranging from dynamical localization to normal diffusion to ballistic motion. Dynamical localization and normal diffusion simulate electron motion in an impure crystal with a vanishing and finite conductivity, i.e., an Anderson insulator and a metal, respectively. Ballistic motion simulates a perfect crystal with diverging conductivity, i.e., a supermetal. We analytically find and numerically confirm that, for a large class of chaotic systems, the metal-supermetal dynamics crossover occurs and is universal, determined only by the systems symmetry. Furthermore, we show that the universality of this dynamics crossover is identical to that of eigenfunction and spectral fluctuations described by the random matrix theory.

Download