Do you want to publish a course? Click here

Rank distribution of Delsarte codes

64   0   0.0 ( 0 )
 Added by Hiram H. L\\'opez
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

In analogy with the Singleton defect for classical codes, we propose a definition of rank defect for Delsarte rank-metric codes. We characterize codes whose rank defect and dual rank defect are both zero, and prove that the rank distribution of such codes is determined by their parameters. This extends a result by Delsarte on the rank distribution of MRD codes. In the general case of codes of positive defect, we show that the rank distribution is determined by the parameters of the code, together the number of codewords of small rank. Moreover, we prove that if the rank defect of a code and its dual are both one, and the dimension satisfies a divisibility condition, then the number of minimum-rank codewords and dual minimum-rank codewords is the same. Finally, we discuss how our results specialize to Gabidulin codes.



rate research

Read More

This paper extends the study of rank-metric codes in extension fields $mathbb{L}$ equipped with an arbitrary Galois group $G = mathrm{Gal}(mathbb{L}/mathbb{K})$. We propose a framework for studying these codes as subspaces of the group algebra $mathbb{L}[G]$, and we relate this point of view with usual notions of rank-metric codes in $mathbb{L}^N$ or in $mathbb{K}^{Ntimes N}$, where $N = [mathbb{L} : mathbb{K}]$. We then adapt the notion of error-correcting pairs to this context, in order to provide a non-trivial decoding algorithm for these codes. We then focus on the case where $G$ is abelian, which leads us to see codewords as elements of a multivariate skew polynomial ring. We prove that we can bound the dimension of the vector space of zeroes of these polynomials, depending of their degree. This result can be seen as an analogue of Alon-Furedi theorem -- and by means, of Schwartz-Zippel lemma -- in the rank metric. Finally, we construct the counterparts of Reed-Muller codes in the rank metric, and we give their parameters. We also show the connection between these codes and classical Reed-Muller codes in the case where $mathbb{L}$ is a Kummer extension.
This paper investigates the theory of sum-rank metric codes for which the individual matrix blocks may have different sizes. Various bounds on the cardinality of a code are derived, along with their asymptotic extensions. The duality theory of sum-rank metric codes is also explored, showing that MSRD codes (the sum-rank analogue of MDS codes) dualize to MSRD codes only if all matrix blocks have the same number of columns. In the latter case, duality considerations lead to an upper bound on the number of blocks for MSRD codes. The paper also contains various constructions of sum-rank metric codes for variable block sizes, illustrating the possible behaviours of these objects with respect to bounds, existence, and duality properties.
We derive simplified sphere-packing and Gilbert--Varshamov bounds for codes in the sum-rank metric, which can be computed more efficiently than previous ones. They give rise to asymptotic bounds that cover the asymptotic setting that has not yet been considered in the literature: families of sum-rank-metric codes whose block size grows in the code length. We also provide two genericity results: we show that random linear codes achieve almost the sum-rank-metric Gilbert--Varshamov bound with high probability. Furthermore, we derive bounds on the probability that a random linear code attains the sum-rank-metric Singleton bound, showing that for large enough extension fields, almost all linear codes achieve it.
In 1997, Shor and Laflamme defined the weight enumerators for quantum error-correcting codes and derived a MacWilliams identity. We extend their work by introducing our double weight enumerators and complete weight enumerators. The MacWilliams identities for these enumerators can be obtained similarly. With the help of MacWilliams identities, we obtain various bounds for asymmetric quantum codes.
Polar codes are a class of linear block codes that provably achieves channel capacity, and have been selected as a coding scheme for $5^{rm th}$ generation wireless communication standards. Successive-cancellation (SC) decoding of polar codes has mediocre error-correction performance on short to moderate codeword lengths: the SC-Flip decoding algorithm is one of the solutions that have been proposed to overcome this issue. On the other hand, SC-Flip has a higher implementation complexity compared to SC due to the required log-likelihood ratio (LLR) selection and sorting process. Moreover, it requires a high number of iterations to reach good error-correction performance. In this work, we propose two techniques to improve the SC-Flip decoding algorithm for low-rate codes, based on the observation of channel-induced error distributions. The first one is a fixed index selection (FIS) scheme to avoid the substantial implementation cost of LLR selection and sorting with no cost on error-correction performance. The second is an enhanced index selection (EIS) criterion to improve the error-correction performance of SC-Flip decoding. A reduction of $24.6%$ in the implementation cost of logic elements is estimated with the FIS approach, while simulation results show that EIS leads to an improvement on error-correction performance improvement up to $0.42$ dB at a target FER of $10^{-4}$.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا