No Arabic abstract
We have used the Submillimeter Array to image, at ~1 resolution, C2H(3-2) emission from the molecule-rich circumstellar disks orbiting the nearby, classical T Tauri star systems TW Hya and V4046 Sgr. The SMA imaging reveals that the C2H emission exhibits a ring-like morphology within each disk, the inner hole radius of the C2H ring within the V4046 Sgr disk (~70 AU) is somewhat larger than than of its counterpart within the TW Hya disk (~45 AU). We suggest that, in each case, the C2H emission likely traces irradiation of the tenuous surface layers of the outer disks by high-energy photons from the central stars.
We present a suite of ALMA interferometric molecular line and continuum images that elucidate, on linear size scales of $sim$30--40 AU, the chemical structure of the nearby, evolved, protoplanetary disk orbiting the close binary system V4046 Sgr. The observations were undertaken in the 1.1--1.4 mm wavelength range (ALMA Bands 6 and 7) with antenna configurations involving maximum baselines of several hundred meters, yielding subarcsecond-resolution images in more than a dozen molecular species and isotopologues. Isotopologues of CO and HCN display centrally peaked morphologies of integrated emission line intensity, whereas the line emission from complex nitrile group molecules (HC$_3$N, CH$_3$CN), deuterated molecules (DCN, DCO$^+$), hydrocarbons (as traced by C$_2$H), and potential CO ice line tracers (N$_2$H$^+$, and H$_2$CO) appears as a sequence of sharp and diffuse rings. The dimensions and morphologies of HC$_3$N and CH$_3$CN emission are suggestive of photodesorption of organic ices from the surfaces of dust grains, while the sequence of increasing radius of peak intensity represented by DCN (smallest), DCO$^+$, N$_2$H$^+$, and H$_2$CO (largest) is qualitatively consistent with the expected decline of midplane gas temperature with increasing disk radius. Empirical modeling indicates that the sharp-edged C$_2$H emission ring lies at relatively deep disk layers, leaving open the question of the origin of C$_2$H abundance enhancements in evolved disks. This study of the molecular anatomy of V4046 Sgr should serve as motivation for additional subarcsecond ALMA molecular line imaging surveys of nearby, evolved protoplanetary disks aimed at addressing major uncertainties in protoplanetary disk physical and chemical structure and molecular production pathways.
We present new photometric and spectroscopic data for the M-type members of the TW Hya association with the aim of a comprehensive study of accretion, disks and magnetic activity at the critical age of ~10 Myr where circumstellar matter disappears.
We assess the current membership of the nearby, young TW Hydrae Association and examine newly proposed members with the Wide-field Infrared Survey Explorer (WISE) to search for infrared excess indicative of circumstellar disks. Newly proposed members TWA 30A, TWA 30B, TWA 31, and TWA 32 all show excess emission at 12 and 22 mum providing clear evidence for substantial dusty circumstellar disks around these low-mass, ~8 Myr old stars that were previously shown to likely be accreting from circumstellar material. TWA 30B shows large amounts of self-extinction, likely due to an edge-on disk geometry. We also confirm previously reported circumstellar disks with WISE, and determine a 22 mum excess fraction of 42+/- 9% based on our results.
Context. This paper discusses the sensitivity of water lines to chemical processes and radiative transfer for the protoplanetary disk around TW Hya. The study focuses on the Herschel spectral range in the context of new line detections with the PACS instrument from the Gas in Protoplanetary Systems project (GASPS). Aims. The paper presents an overview of the chemistry in the main water reservoirs in the disk around TW Hya. It discusses the limitations in the interpretation of observed water line fluxes. Methods. ... (abbreviated) Results. We report new line detections of p-H2O (3_22-2_11) at 89.99 micron and CO J=18-17 at 144.78 micron for the disk around TW Hya. Disk modeling shows that the far-IR fine structure lines ([OI], [CII]) and molecular submm lines are very robust to uncertainties in the chemistry, while the water line fluxes can change by factors of a few. The water lines are optically thick, sub-thermally excited and can couple to the background continuum radiation field. The low-excitation water lines are also sensitive to uncertainties in the collision rates, e.g. with neutral hydrogen. The gas temperature plays an important role for the [OI] fine structure line fluxes, the water line fluxes originating from the inner disk as well as the high excitation CO, CH+ and OH lines. Conclusions. Due to their sensitivity on chemical input data and radiative transfer, water lines have to be used cautiously for understanding details of the disk structure. Water lines covering a wide range of excitation energies provide access to the various gas phase water reservoirs (inside and outside the snow line) in protoplanetary disks and thus provide important information on where gas-phase water is potentially located. Experimental and/or theoretical collision rates for H2O with atomic hydrogen are needed to diminish uncertainties from water line radiative transfer.
We report the results of a mm-wave molecular line survey of the nearby (D ~ 70 pc), 12 Myr-old system V4046 Sgr -- a tight (9 R_sun separation), short-period (2.42 day) binary with nearly equal component masses of ~0.9 M_sun -- conducted with the 30 m telescope of the Institut de Radio Astronomie Millimetrique (IRAM). We detected rotational transitions of 12CO 13CO, HCN, CN, and HCO+. The double-peaked CO line profiles of V4046 Sgr are well fit by a model invoking a Keplerian disk with outer radius of ~250 AU that is viewed at an inclination i = 35 degrees. We infer minimum disk gas and dust masses of ~13 and ~20 Earth masses from the V4046 Sgr CO line and submm continuum fluxes, respectively. The actual disk gas mass could be much larger if the gas-phase CO is highly depleted and/or 13CO is very optically thick. The overall similarity of the circumbinary disk of V4046 Sgr to the disk orbiting the single, ~8 Myr-old star TW Hya -- a star/disk system often regarded as representative of the early solar nebula -- indicates that gas giant planets are likely commonplace among close binary star systems. Given the relatively advanced age and proximity of V4046 Sgr, these results provide strong motivation for future high-resolution imaging designed to ascertain whether a planetary system now orbits its twin suns.