No Arabic abstract
The construction of the European Spallation Source (ESS) faces many challenges from the neutron beam transport point of view: The spallation source is specified as being driven by a 5 MW beam of protons, each with 2 GeV energy, and yet the requirements in instrument background suppression relative to measured signal vary between 10$^{-6}$ and 10$^{-8}$. The energetic particles, particularly above 20 MeV, which are expected to be produced in abundance in the target, have to be filtered in order to make the beamlines safe, operational and provide good quality measurements with low background. We present generic neutron guides of short and medium length instruments which are optimized for good performance at minimal cost. Direct line of sight to the source is avoided twice, with either the first point out of line of sight or both being inside the bunker (20,m) to minimize shielding costs. These guide geometries are regarded as a baseline to define standards for instruments to be constructed at ESS. They are used to find commonalities and develop principles and solutions for common problems. Lastly, we report the impact of employing the over-illumination concept to mitigate losses from random misalignment passively, and that over-illumination should be used sparingly in key locations to be effective. For more widespread alignment issues, a more direct, active approach is likely to be needed.
We model the effect of ground movement, based on empirical experience, on the transport properties of long neutron guides by ray-tracing simulations. Our results reproduce the large losses found by an earlier study for a simple model, while for a more realistic engineering model of guide mounting, we find the losses to be significantly smaller than earlier predicted. A detailed study of the guide for the cold neutron spectrometer BIFROST at the European Spallation Source shows that the loss is 7.0(5) % for wavelengths of 2.3-4.0 {AA}; the typical operational wavelength range of the instrument. This amount of loss does not call for mitigation by overillumination as suggested in the previous work. Our work serves to quantify the robustness of the transport properties of long neutron guides, in construction or planning at neutron facilities worldwide.
Transport calculations for neutronic design require accurate nuclear data and validated computational tools. In the Spallation Physics Group, at the European Spallation Source, we perform shielding and neutron beam calculations to help the deployment of the instrument suite for the current high brilliance (top) moderator, as well for the design of the high intensity bottom moderator, currently under study for the facility. This work includes providing the best available nuclear data in addition to improving models and tools when necessary. In this paper we present the status of these activities, which include a set of thermal scattering kernels for moderator, reflector, and structural materials, the development of new kernels for beryllium considering crystallite size effects, nanodiamonds, liquid hydrogen and deuterium based on path integral molecular dynamics, and the use of the software package NCrystal to assist the development of nuclear data in the framework of the new HighNESS project.
The European Spallation Source being constructed in Lund, Sweden will provide the user community with a neutron source of unprecedented brightness. By 2025, a suite of 15 instruments will be served by a high-brightness moderator system placed above the spallation target. The ESS infrastructure, consisting of the proton linac, the target station, and the instrument halls, allows for implementation of a second source below the spallation target. We propose to develop a second neutron source with a high-intensity moderator able to (1) deliver a larger total cold neutron flux, (2) provide high intensities at longer wavelengths in the spectral regions of Cold (4-10 AA ), Very Cold (10-40 AA ), and Ultra Cold (several 100 AA ) neutrons, as opposed to Thermal and Cold neutrons delivered by the top moderator. Offering both unprecedented brilliance, flux, and spectral range in a single facility, this upgrade will make ESS the most versatile neutron source in the world and will further strengthen the leadership of Europe in neutron science. The new source will boost several areas of condensed matter research such as imaging and spin-echo, and will provide outstanding opportunities in fundamental physics investigations of the laws of nature at a precision unattainable anywhere else. At the heart of the proposed system is a volumetric liquid deuterium moderator. Based on proven technology, its performance will be optimized in a detailed engineering study. This moderator will be complemented by secondary sources to provide intense beams of Very- and Ultra-Cold Neutrons.
The European Spallation Source (ESS), presently well on its way to completion, will soon provide the most intense neutron beams for multi-disciplinary science. Fortuitously, it will also generate the largest pulsed neutrino flux suitable for the detection of Coherent Elastic Neutrino-Nucleus Scattering (CE$ u$NS), a process recently measured for the first time at ORNLs Spallation Neutron Source. We describe innovative detector technologies maximally able to profit from the order-of-magnitude increase in neutrino flux provided by the ESS, along with their sensitivity to a rich particle physics phenomenology accessible through high-statistics, precision CE$ u$NS measurements.
The European Spallation Source is being constructed in Lund, Sweden and is planned to be the worlds brightest pulsed spallation neutron source for cold and thermal neutron beams ($le$ 1 eV). The facility uses a 2 GeV proton beam to produce neutrons from a tungsten target. The neutrons are then moderated in a moderator assembly consisting of both liquid hydrogen and water compartments. Surrounding the moderator are 22 beamports, which view the moderators outside surfaces. The beamports are connected to long neutron guides that transport the moderated neutrons to the sample position via reflections. As well as the desired moderated neutrons, fast neutrons coming directly from the target can find their way down the beamlines. These can create unwanted sources of background for the instruments. To mitigate such a kind of background, several instruments will use curved guides to lose direct line-of-sight (LoS) to the moderator and the target. In addition instruments can also use shielding collimators to reduce the amount of fast neutrons further traveling down the guide due to albedo reflections or streaming. Several different materials have been proposed for this purpose. We present the results of a study of different options for collimators and identify the optimal choices that balance cost, background and activation levels.