No Arabic abstract
In the past years the spotlight of the search for dark matter particles widened to the low mass region, both from theoretical and experimental side. We discuss results from data obtained in 2013 with a single detector TUM40. This detector is equipped with a new upgraded holding scheme to efficiently veto backgrounds induced by surface alpha decays. This veto, the low threshold of 0.6keV and an unprecedented background level for CaWO$_4$ target crystals render TUM40 the detector with the best overall performance of CRESST-II phase 2 (July 2013 - August 2015). A low-threshold analysis allowed to investigate light dark matter particles (<3GeV/c$^2$), previously not accessible for other direct detection experiments.
The CRESST experiment aims for a detection of dark matter in the form of WIMPs. These particles are expected to scatter elastically off the nuclei of a target material, thereby depositing energy on the recoiling nucleus. CRESST uses scintillating CaWO4 crystals as such a target. The energy deposited by an interacting particle is primarily converted to phonons which are detected by transition edge sensors. In addition, a small fraction of the interaction energy is emitted from the crystals in the form of scintillation light which is measured in coincidence with the phonon signal by a separate cryogenic light detector for each target crystal. The ratio of light to phonon energy permits the discrimination between the nuclear recoils expected from WIMPs and events from radioactive backgrounds which primarily lead to electron recoils. CRESST has shown the success of this method in a commissioning run in 2007 and, since then, further investigated possibilities for an even better suppression of backgrounds. Here, we report on a new class of background events observed in the course of this work. The consequences of this observation are discussed and we present the current status of the experiment.
The DAMIC experiment uses fully depleted, high resistivity CCDs to search for dark matter particles. With an energy threshold $sim$50 eV$_{ee}$, and excellent energy and spatial resolutions, the DAMIC CCDs are well-suited to identify and suppress radioactive backgrounds, having an unrivaled sensitivity to WIMPs with masses $<$6 GeV/$c^2$. Early results motivated the construction of a 100 g detector, DAMIC100, currently being installed at SNOLAB. This contribution discusses the installation progress, new calibration efforts near the threshold, a preliminary result with 2014 data, and the prospects for physics results after one year of data taking.
Direct Dark Matter detection with cryodetectors is briefly discussed, with particular mention of the possibility of the identification of the recoil nucleus. Preliminary results from the CREEST II Dark Matter search, with 730 kg-days of data, are presented. Major backgrounds and methods of identifying and dealing with them are indicated.
We present first competitive results on WIMP dark matter using the phonon-light-detection technique. A particularly strong limit for WIMPs with coherent scattering results from selecting a region of the phonon-light plane corresponding to tungsten recoils. The observed count rate in the neutron band is compatible with the rate expected from neutron background. CRESST is presently being upgraded with a 66 channel SQUID readout system, a neutron shield and a muon veto system. This results in a significant improvement in sensitivity.
The DEAP-3600 experiment is located 2 km underground at SNOLAB, in Sudbury, Ontario. It is a single-phase detector that searches for dark matter particle interactions within a 1000-kg fiducial mass target of liquid argon. A first generation prototype detector (DEAP-1) with a 7-kg liquid argon target mass demonstrated a high level of pulse-shape discrimination (PSD) for reducing $beta$/$gamma$ backgrounds and helped to develop low radioactivity techniques to mitigate surface-related $alpha$ backgrounds. Construction of the DEAP-3600 detector is nearly complete and commissioning is starting in 2014. The target sensitivity to spin-independent scattering of Weakly Interacting Massive Particles (WIMPs) on nucleons of 10$^{-46}$ cm$^2$ will allow one order of magnitude improvement in sensitivity over current searches at 100 GeV WIMP mass. This paper presents an overview and status of the DEAP-3600 project and discusses plans for a future multi-tonne experiment, DEAP-50T.