New Topological Structures of Skyrme Theory: Baryon Number and Monopole Number


Abstract in English

Based on the observation that the skyrmion in Skyrme theory can be viewed as a dressed monopole, we show that the skyrmions have two independent topology, the baryon topology $pi_3(S^3)$ and the monopole topology $pi_2(S^2)$. With this we propose to classify the skyrmions by two topological numbers $(m,n)$, the monopole number $m$ and the shell (radial) number $n$. In this scheme the popular (non spherically symmetric) skyrmions are classified as the $(m,1)$ skyrmions but the spherically symmetric skyrmions are classified as the $(1,n)$ skyrmions, and the baryon number $B$ is given by $B=mn$. Moreover, we show that the vacuum of the Skyrme theory has the structure of the vacuum of the Sine-Gordon theory and QCD combined together, which can also be classified by two topological numbers $(p,q)$. This puts the Skyrme theory in a totally new perspective.

Download