Do you want to publish a course? Click here

Electro-weak $pipi$ form factor and $pipi$ scattering: towards a phenomenological tool

72   0   0.0 ( 0 )
 Added by Manoel Robilotta
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

The weak two-pion form factor $F_V^{pipi}$ is described as the product of a weak kernel $cal{K}_W$ by a strong function $Theta_{pipi}^P$, determined directly from $pipi$ scattering data. As the latter accounts at once for all effects associated with resonances, intermediate $Kbar{K}$ loops, and other possible inelasticities present in $pipi$ scattering, the need of modeling is restricted to $cal{K}_W$ only. The procedure proposed allows one to asses the weak kernel directly, which has a dominant cut beginning at the $Kbar{K}$ threshold. Even the simplest vector-meson-dominance choice for $cal{K}_W$ already yields a good qualitative description of $F_V^{pipi}$. The energy sector below $0.8$ GeV is quite well reproduced when a precise theoretical chiral perturbation $pipi$ amplitude is used as input, together with the single free parameter $F_V G_V/F^2=1.20$. The inclusion of kaon loops, along well established lines and using few parameters, produces a good description of the form factor in the entire energy range allowed by $tau$ decays. This indicates that the replacement of modeling by direct empirical scattering information can also be useful in the construction of theoretical tools to be used in analysesof hadronic heavy meson decay data.



rate research

Read More

A Wilsonian approach to $pipi$ scattering based in the Glazek-Wilson Similarity Renormalization Group (SRG) for Hamiltonians is analyzed in momentum space up to a maximal CM energy of $sqrt{s}=1.4$ GeV. To this end, we identify the corresponding relativistic Hamiltonian by means of the 3D reduction of the Bethe-Salpeter equation in the Kadyshevsky scheme, introduce a momentum grid and provide an isospectral definition of the phase-shift based on a spectral shift of a Chebyshev angle. We also propose a new method to integrate the SRG equations based on the Crank-Nicolson algorithm with a single step finite difference so that isospectrality is preserved at any step of the calculations. We discuss issues on the unnatural high momentum tails present in the fitted interactions and reaching far beyond the maximal CM energy of $sqrt{s}=1.4$ GeV and how these tails can be integrated out explicitly by using Block-Diagonal generators of the SRG.
The Khuri-Treiman formalism models the partial-wave expansion of a scattering amplitude as a sum of three individual truncated series, capturing the low-energy dynamics of the direct and cross channels. We cast this formalism into dispersive equations to study $pipi$ scattering, and compare their expressions and numerical output to the Roy and GKPY equations. We prove that the Khuri-Treiman equations and Roy equations coincide when both are truncated to include only $S$- and $P$-waves. When higher partial waves are included, we find an excellent agreement between the Khuri-Treiman and the GKPY results. This lends credence to the notion that the Khuri-Treiman formalism is a reliable low-energy tool for studying hadronic reaction amplitudes.
A Wilsonian approach based on the Similarity Renormalization Group to $pipi$ scattering is analyzed in the $JI=$00, 11 and 02 channels in momentum space up to a maximal CM energy of $sqrt{s}=1.4$ GeV. We identify the Hamiltonian by means of the 3D reduction of the Bethe-Salpeter equation in the Kadyschevsky scheme. We propose a new method to integrate the SRG equations based in the Crank-Nicolson algorithm with a single step finite difference so that isospectrality is preserved at any step of the calculations. We discuss issues on the high momentum tails present in the fitted interactions hampering calculations.
We present for the first time a determination of the energy dependence of the isoscalar $pipi$ elastic scattering phase-shift within a first-principles numerical lattice approach to QCD. Hadronic correlation functions are computed including all required quark propagation diagrams, and from these the discrete spectrum of states in the finite volume defined by the lattice boundary is extracted. From the volume dependence of the spectrum we obtain the $S$-wave phase-shift up to the $Koverline{K}$ threshold. Calculations are performed at two values of the $u,d$ quark mass corresponding to $m_pi = 236, 391$ MeV and the resulting amplitudes are described in terms of a $sigma$ meson which evolves from a bound-state below $pipi$ threshold at the heavier quark mass, to a broad resonance at the lighter quark mass.
We present results for the isospin-0 $pipi$ s-wave scattering length calculated in twisted mass lattice QCD. We use three $N_f = 2$ ensembles with unitary pion mass at its physical value, 240~MeV and 330~MeV respectively. We also use a large set of $N_f = 2 + 1 +1$ ensembles with unitary pion masses varying in the range of 230~MeV - 510~MeV at three different values of the lattice spacing. A mixed action approach with the Osterwalder-Seiler action in the valence sector is adopted to circumvent the complications arising from isospin symmetry breaking of the twisted mass quark action. Due to the relatively large lattice artefacts in the $N_f = 2 + 1 +1$ ensembles, we do not present the scattering lengths for these ensembles. Instead, taking the advantage of the many different pion masses of these ensembles, we qualitatively discuss the pion mass dependence of the scattering properties of this channel based on the results from the $N_f = 2 + 1 +1$ ensembles. The scattering length is computed for the $N_f = 2$ ensembles and the chiral extrapolation is performed. At the physical pion mass, our result $M_pi a^mathrm{I=0}_0 = 0.198(9)(6)$ agrees reasonably well with various experimental measurements and theoretical predictions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا