Do you want to publish a course? Click here

The search for active black holes in nearby low-mass galaxies using optical and mid-IR data

41   0   0.0 ( 0 )
 Added by Lia Federica
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated AGN activity in low-mass galaxies, an important regime that can shed light onto BH formation and evolution, and their interaction with their host galaxies. We identified 336 AGN candidates from a parent sample of $sim 48,000$ nearby low-mass galaxies ($M_{rm star} leq 10^{9.5}M_odot$, $z < 0.1$) in the SDSS. We selected the AGN using the classical BPT diagram, a similar optical emission line diagnostic based on the HeII$lambda$4686 line, and mid-IR color cuts. Different criteria select host galaxies with different physical properties such as stellar mass and optical color, and only 3 out of 336 sources fulfill all three criteria. This could be in part due to selection biases. The resulting AGN fraction of $sim 0.7 %$ is at least one order of magnitude below the one estimated for more massive galaxies. At optical wavelengths, the HeII-based AGN selection appears to be more sensitive to AGN hosted in star-forming galaxies than the classical BPT diagram, at least in the low-mass regime. The archival X-ray and radio data available for some of the optically selected AGN candidates seem to confirm their AGN nature, but follow-up observations are needed to confirm the AGN nature of the rest of the sample, especially in the case of mid-IR selection. Our sample will be important for future follow-up studies aiming to understand the relation between BHs and host galaxies in the low-mass regime.



rate research

Read More

The ngVLA will facilitate deep surveys capable of detecting the faint and compact signatures of accreting supermassive black holes (SMBHs) with masses below one million solar-masses hosted by low-mass ($< 10^9$ solar-masses) galaxies. This will provide important new insights on both the origins of supermassive black holes and the possible impact of active galactic nucleus-driven feedback in a currently unexplored mass regime.
We investigate the possible presence of active galactic nuclei (AGN) in dwarf galaxies and other nearby galaxies to identify candidates for follow-up confirmation and dynamical mass measurements. We use the Wide-field Infrared Survey Explorer (WISE) All-Sky Release Source Catalog and examine the infrared colours of a sample of dwarf galaxies and other nearby galaxies in order to identify both unobscured and obscured candidate AGN by applying the infrared colour diagnostic. Stellar masses of galaxies are obtained using a combination of three independent methods. Black hole masses are estimated using the bolometric luminosity of the AGN candidates and computed for three cases of the bolometric-to-Eddington luminosity ratio. We identify 303 candidate AGN, of which 276 were subsequently found to have been independently identified as AGN via other methods. The remaining 9% require follow-up observations for confirmation. The activity is detected in galaxies with stellar masses from ~ 10^6 to 10^9 solar masses; assuming the candidates are AGN, the black hole masses are estimated to be ~ 10^3 - 10^6 solar masses, adopting L_bol = 0.1 L_Edd. The black hole masses probed are several orders of magnitude smaller than previously reported for centrally located massive black holes. We examine the stellar mass versus black hole mass relationship in this low galaxy mass regime. We find that it is consistent with the existing relation extending linearly (in log-log space) into the lower mass regime. These findings suggest that CMBH are present in low-mass galaxies and in the Local Universe, and provide new impetus for follow-up dynamical studies of quiescent black holes in local dwarf galaxies.
Low-mass compact galaxies (ultracompact dwarfs [UCDs] and compact ellipticals [cEs]) populate the stellar size-mass plane between globular clusters and early-type galaxies. Known to be formed either in-situ with an intrinsically low mass or resulting from the stripping of a more massive galaxy, the presence of a supermassive or an intermediate-mass black hole (BH) could help discriminate between these possible scenarios. With this aim, we have performed a multiwavelength search of active BH activity, i.e. active galactic nuclei (AGN), in a sample of 937 low-mass compact galaxies (580 UCDs and 357 cEs). This constitutes the largest study of AGN activity in these types of galaxies. Based on their X-ray luminosity, radio luminosity and morphology, and/or optical emission line diagnostic diagrams, we find a total of 11 cEs that host an AGN. We also study for the first time the location of both low-mass compact galaxies (UCDs and cEs) and dwarf galaxies hosting AGN on the BH-galaxy scaling relations, finding that low-mass compact galaxies tend to be overmassive in the BH mass-stellar mass plane but not as much in the BH mass-stellar velocity dispersion correlation. This, together with available BH mass measurements for some of the low-mass compact galaxies, supports a stripping origin for the majority of these objects that would contribute to the scatter seen at the low-mass end of the BH-galaxy scaling relations. However, the differences are too large to be explained solely by this scatter, and thus our results suggest that a flattening at such low-masses is also plausible, happening at a velocity dispersion of ~20-40 km/s.
419 - Jenny E. Greene 2007
We present an expanded sample of low-mass black holes (BHs) found in galactic nuclei. Using standard virial mass techniques to estimate BH masses, we select from the Fourth Data Release of the Sloan Digital Sky Survey all broad-line active galaxies with masses < 2 x 10^6 M_sun. BHs in this mass regime provide unique tests of the relationship between BHs and galaxies, since their late-type galaxy hosts do not necessarily contain classical bulges. Furthermore, they provide observational analogs of primordial seed BHs and are expected, when merging, to provide strong gravitational signals for future detectors such as LISA. From our preliminary sample of 19, we have increased the total sample by an order of magnitude to 174, as well as an additional 55 (less secure) candidates. The sample has a median BH mass of <M_BH> = 1.3 x 10^6 M_sun, and in general the objects are radiating at high fractions of their Eddington limits. We investigate the broad spectral properties of the sample; 55 are detected by rosat, with soft X-ray luminosities in the range 10^40 to 7 x 10^43 ergs/sec. Much like the preliminary sample, these objects are predominantly radio-quiet (R = f_6cm/f_4400A < 10), but 11 objects are detected at 20 cm, with radio powers (10^21-10^23 W/Hz) that may arise from either star formation or nuclear activity; only 1% of the sample is radio-loud. We further confirm that, with <M_g>=-19.3 and <g-r> = 0.7 mag, the host galaxies are low-mass, late-type systems. At least 40% show disk-like morphologies, and the combination of host galaxy colors and higher-order Balmer absorption lines indicate intermediate-age stellar populations in a subset of the sample.
We present a new method to effectively select objects which may be low-mass active black holes (BHs) at galaxy centers using high-cadence optical imaging data, and our first spectroscopic identification of an active 2.7x10^6 Msun BH at z=0.164. This active BH was originally selected due to its rapid optical variability, from a few hours to a day, based on Subaru Hyper Suprime-Cam~(HSC) g-band imaging data taken with 1-hour cadence. Broad and narrow H-alpha and many other emission lines are detected in our optical spectra taken with Subaru FOCAS, and the BH mass is measured via the broad H-alpha emission line width (1,880 km s^{-1}) and luminosity (4.2x10^{40} erg s^{-1}) after careful correction for the atmospheric absorption around 7,580-7,720A. We measure the Eddington ratio to be as low as 0.05, considerably smaller than those in a previous SDSS sample with similar BH mass and redshift, which indicates one of the strong potentials of our Subaru survey. The g-r color and morphology of the extended component indicate that the host galaxy is a star-forming galaxy. We also show effectiveness of our variability selection for low-mass active BHs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا