Do you want to publish a course? Click here

Composition dependence of electronic, magnetic, transport and morphological properties of mixed valence manganite thin films

62   0   0.0 ( 0 )
 Added by Surendra Singh
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a comparison of the in-plane length scale over which charge and magnetism are correlated in (La0.4Pr0.6)1-xCaxMnO3 films with x = 0.33 and 0.375, across the metal to insulator transition (MIT) temperature. We combine electrical transport (resistance) measurements, x-ray absorption spectroscopy (XAS), x-ray magnetic circular dichroism (XMCD), and specular/off-specular x-ray resonant magnetic scattering (XRMS) measurements as a function of temperature to elucidate relationships between electronic, magnetic and morphological structure of the thin films. Using off-specular XRMS we obtained the charge-charge and charge-magnetic correlation length of these LPCMO films near the MIT. The charge-magnetic correlation length (~ 12000 {AA}) for x = 0.33 was much larger (~4 times) than the charge-charge correlation length (~ 3200 {AA}) at 20 K. Whereas for x = 0.375 the charge-magnetic correlation length (~ 7500 {AA}) was smaller than the charge-charge correlation length (~ 9000 {AA}).



rate research

Read More

We report the growth of thin films of the mixed valence compound YbAl$_{3}$ on MgO using molecular-beam epitaxy. Employing an aluminum buffer layer, epitaxial (001) films can be grown with sub-nm surface roughness. Using x-ray diffraction, in situ low-energy electron diffraction and aberration-corrected scanning transmission electron microscopy we establish that the films are ordered in the bulk as well as at the surface. Our films show a coherence temperature of 37 K, comparable to that reported for bulk single crystals. Photoelectron spectroscopy reveals contributions from both $textit{f}^{13}$ and $textit{f}^{12}$ final states establishing that YbAl$_{3}$ is a mixed valence compound and shows the presence of a Kondo Resonance peak near the Fermi-level.
We have carried out extensive comparative studies of the structural and transport properties of CaRuO$_3$ thin films grown under various oxygen pressure. We find that the preferred orientation and surface roughness of the films are strongly affected by the oxygen partial pressure during growth. This in turn affects the electrical and magnetic properties of the films. Films grown under high oxygen pressure have the least surface roughness and show transport characteristics of a good metal down to the lowest temperature measured. On the other hand, films grown under low oxygen pressures have high degree of surface roughness and show signatures of ferromagnetism. We could verify that the low frequency resistance fluctuations (noise) in these films arise due to thermally activated fluctuations of local defects and that the defect density matches with the level of disorder seen in the films through structural characterizations.
Strong interplay of fundamental order parameters in complex oxides are known to give rise to exotic physical phenomena. The 4d transition metal oxide SrRhO3 has generated much interest, but advances have been hindered by difficulties in preparing single crystalline phases. Here, we have epitaxially stabilized high quality single crystalline SrRhO3 films and investigated their structural, electronic, and magnetic properties. We determine that their properties significantly differ from the paramagnetic metallic ground state that governs bulk samples and are strongly related to rotations of the RhO6 octahedra.
We have performed x-ray linear and circular magnetic dichroism experiments at the Mn L2,3-edge of the La0.7Sr0.3MnO3 ultra thin films. Our measurements show that the antiferromagnetic (AF) insulating phase is stabilized by the interfacial rearrangement of the Mn 3d orbitals, despite the relevant magnetostriction anisotropic effect on the double-exchange ferromagnetic (FM) metallic phase. As a consequence, the Mn atomic magnetic moment orientation and how it reacts to strain differ in the FM and AF phases. In some cases a FM insulating (FMI) phase adds to the AF and FM. Its peculiar magnetic properties include in-plane magnetic anisotropy and partial release of the orbital moment quenching. Nevertheless the FMI phase appears little coupled to the other ones.
Mott physics is characterized by an interaction-driven metal-to-insulator transition in a partially filled band. In the resulting insulating state, antiferromagnetic orders of the local moments typically develop, but in rare situations no long-range magnetic order appears, even at zero temperature, rendering the system a quantum spin liquid. A fundamental and technologically critical question is whether one can tune the underlying energetic landscape to control both metal-to-insulator and Neel transitions, and even stabilize latent metastable phases, ideally on a platform suitable for applications. Here we demonstrate how to achieve this in ultrathin films of NdNiO3 with various degrees of lattice mismatch, and report on the quantum critical behaviours not reported in the bulk by transport measurements and resonant X-ray spectroscopy/scattering. In particular, on the decay of the antiferromagnetic Mott insulating state into a non-Fermi liquid, we find evidence of a quantum metal-to-insulator transition that spans a non-magnetic insulating phase.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا