We study the Optimal Linear Arrangement (OLA) problem of Halin graphs, one of the simplest classes of non-outerplanar graphs. We present several properties of OLA of general Halin graphs. We prove a lower bound on the cost of OLA of any Halin graph, and define classes of Halin graphs for which the cost of OLA matches this lower bound. We show for these classes of Halin graphs, OLA can be computed in O(n log n), where n is the number of vertices.