No Arabic abstract
The Galactic Cold Cores project has made Herschel observations of 116 fields where the Planck survey has found signs of cold dust emission. The fields contain sources in different environments and different phases of star formation. The dust opacity spectral index beta and the dust colour temperature T are derived using Herschel and Planck data. The relation between beta and T is examined for the whole sample and inside individual fields. Based on IRAS and Planck data, the fields are characterised by a median colour temperature of 16.1 K and a median opacity spectral index of beta=1.84. We observe a clear T-beta anti-correlation. In Herschel observations, constrained at lower resolution by Planck data, the variations follow the column density structure and beta(FIR) can rise to ~2.2 in individual clumps. The Planck 217 GHz band shows a systematic excess that is consistent with a general flattening of the dust emission spectrum at millimetre wavelengths. When fitted separately below and above 700 um, the median spectral index values are beta(FIR) ~ 1.91 and beta(mm) ~ 1.66. The spectral index changes as a function of column density and wavelength. Beta variations are partly masked by temperature gradients and the changes in the intrinsic grain properties may be even greater.
We present the first search for spinning dust emission from a sample of 34 Galactic cold cores, performed using the CARMA interferometer. For each of our cores we use photometric data from the Herschel Space Observatory to constrain N_{H}, T_{d}, n_{H}, and G_{0}. By computing the mass of the cores and comparing it to the Bonnor-Ebert mass, we determined that 29 of the 34 cores are gravitationally unstable and undergoing collapse. In fact, we found that 6 cores are associated with at least one young stellar object, suggestive of their proto-stellar nature. By investigating the physical conditions within each core, we can shed light on the cm emission revealed (or not) by our CARMA observations. Indeed, we find that only 3 of our cores have any significant detectable cm emission. Using a spinning dust model, we predict the expected level of spinning dust emission in each core and find that for all 34 cores, the predicted level of emission is larger than the observed cm emission constrained by the CARMA observations. Moreover, even in the cores for which we do detect cm emission, we cannot, at this stage, discriminate between free-free emission from young stellar objects and spinning dust emission. We emphasise that, although the CARMA observations described in this analysis place important constraints on the presence of spinning dust in cold, dense environments, the source sample targeted by these observations is not statistically representative of the entire population of Galactic cores.
We examine the cloud structure around the Planck detections in 71 fields observed with the Herschel SPIRE instrument. We wish to determine the general physical characteristics of the fields and to examine the morphology of the clouds where the cold high column density clumps are found. We derive colour temperature and column density maps of the fields. We examine the infrared spectral energy distributions of the main clumps. The clouds are categorised according to their large scale morphology. With the help of recently released WISE satellite data, we look for signs of enhanced mid-infrared scattering (coreshine), an indication of growth of the dust grains, and examine the star formation activity associated with the cold clumps. The mapped clouds have distances ranging from ~100pc to several kiloparsecs and cover a range of sizes and masses from cores of less than 10 solar masses to clouds with masses in excess of 10000 solar mass. Most fields contain some filamentary structures and in about half of the cases a filament or a few filaments dominate the morphology. In one case out of ten, the clouds show a cometary shape or have sharp boundaries indicative of compression by an external force. The width of the filaments is typically ~0.2-0.3pc. However, there is significant variation from 0.1pc to 1pc and the estimates are sensitive to the methods used and the very definition of a filament. Enhanced mid-infrared scattering, coreshine, was detected in four clouds with six additional tentative detections. The cloud LDN183 is included in our sample and remains the best example of this phenomenon. About half of the fields are associated with active star formation as indicated by the presence of mid-infrared point sources. The mid-infrared sources often coincide with structures whose sub-millimetre spectra are still dominated by the cold dust.
In this analysis we illustrate how the relatively new emission mechanism known as spinning dust can be used to characterize dust grains in the interstellar medium. We demonstrate this by using spinning dust emission observations to constrain the abundance of very small dust grains (a $lesssim$ 10nm) in a sample of Galactic cold cores. Using the physical properties of the cores in our sample as inputs to a spinning dust model, we predict the expected level of emission at a wavelength of 1cm for four different very small dust grain abundances, which we constrain by comparing to 1cm CARMA observations. For all of our cores we find a depletion of very small grains, which we suggest is due to the process of grain growth. This work represents the first time that spinning dust emission has been used to constrain the physical properties of interstellar dust grains.
Variations in the dust emissivity are critical for gas mass determinations derived from far-infrared observations, but also for separating dust foreground emission from the Cosmic Microwave Background (CMB). Hi-GAL observations allow us for the first time to study the dust emissivity variations in the inner regions of the Galactic plane at resolution below 1 degree. We present maps of the emissivity spectral index derived from the combined Herschel PACS 160 mu m, SPIRE 250 mu m, 350 mu m, and 500 mu m data, and the IRIS 100 mu m data, and we analyze the spatial variations of the spectral index as a function of dust temperature and wavelength in the two Science Demonstration Phase Hi-GAL fields, centered at l=30{deg} and l=59{deg}. Applying two different methods, we determine both dust temperature and emissivity spectral index between 100 and 500 mu m, at an angular resolution of 4. Combining both fields, the results show variations of the emissivity spectral index in the range 1.8-2.6 for temperatures between 14 and 23 K. The median values of the spectral index are similar in both fields, i.e. 2.3 in the range 100-500 mu m, while the median dust temperatures are equal to 19.1 K and 16.0 K in the l=30{deg} and l=59{deg} field, respectively. Statistically, we do not see any significant deviations in the spectra from a power law emissivity between 100 and 500 mu m. We confirm the existence of an inverse correlation between the emissivity spectral index and dust temperature, found in previous analyses.
The association of filaments with protostellar objects has made these structures a priority target in star formation studies. The datasets of the Herschel Galactic Cold Cores Key Programme allow for a statistical study of filaments with a wide range of intrinsic and environmental characteristics. Characterisation of this sample can be used to identify key physical parameters and quantify the role of environment in the formation of supercritical filaments. Filaments were extracted from fields at D<500pc with the getfilaments algorithm and characterised according to their column density profiles and intrinsic properties. Each profile was fitted with a beam-convolved Plummer-like function and quantified based on the relative contributions from the filament core, represented by a Gaussian, and wing component, dominated by the power-law of the Plummer-like function. These parameters were examined for populations associated with different background levels. We find that filaments increase their core (Mcore) and wing (Mwing) contributions while increasing their total linear mass density (Mtot). Both components appear to be linked to the local environment, with filaments in higher backgrounds having systematically more massive Mcore and Mwing. This dependence on the environment supports an accretion-based model for filament evolution in the local neighbourhood (D<500pc). Structures located in the highest backgrounds develop the highest central Av, Mcore, and Mwing as Mtot increases with time, favoured by the local availability of material and the enhanced gravitational potential. Our results indicate that filaments acquiring a significantly massive central region with Mcore>Mcrit/2 may become supercritical and form stars. This translates into a need for filaments to become at least moderately self-gravitating in order to undergo localised star formation or become star-forming filaments.