We investigate gauge invariant scalar fluctuations of the metric during inflation in a non-perturbative formalism in the framework of a recently introduced scalar-tensor theory of gravity formulated on a Weyl-Integrable geometry. We found that the Weyl scalar field can play the role of the inflaton field in this theory. As an application we study the case of a power law inflation. In this case the quasi-scale invariance of the spectrum for scalar fluctuations of the metric is achieved for determined values of the $omega$ parameter of the scalar-tensor theory. In our formalism the physical inflaton field has a geometrical origin.
In this letter we investigate gauge invariant scalar fluctuations of the metric in a non-perturbative formalism for a Higgs inflationary model recently introduced in the framework of a geometrical scalar-tensor theory of gravity. In this scenario the Higgs inflaton field has its origin in the Weyl scalar field of the background geometry. We found a nearly scale invariance of the power spectrum for linear scalar fluctuations of the metric. For certain parameters of the model we obtain values for the scalar spectral index $n_s$ and the scalar to tensor ratio $r$ that fit well with the Planck 2018 results. Besides we show that in this model the trans-planckian problem can be avoided.
We develop a non-perturbative formalism for scalar metric fluctuations from a 5D extended version of general relativity in vacuum. In this work we concentrate our efforts on calculations valid on large cosmological scales, which are the dominant during the inflationary phase of the universe. The resulting metric in this limit is obtained after implementing a planar coordinate transformation on a 5D Ricci-flat metric solution. We calculate the spectrum of these fluctuations with an effective 4D Schwarzschild-de Sitter spacetime on cosmological scales, which is obtained after we make a static foliation on the non-compact extra coordinate. Our results show how the squared metric fluctuations of the primordial universe become scale invariant with the inflationary expansion.
We revisit an extension of the well-known formalism for gauge-invariant scalar metric fluctuations, to study the spectrums for both, the inflaton and gauge invariant (scalar) metric fluctuations in the framework of a single field inflationary model where the quasi-exponential expansion is driven by an inflation which is minimally coupled to gravity. The proposal here examined is valid also for fluctuations with large amplitude, but for cosmological scales, where vector and tensor perturbations can be neglected and the fluid is irrotacional.
A class of scalar-tensor theories (STT) including a non-metricity that unifies metric, Palatini and hybrid metric-Palatini gravitational actions with non-minimal interaction is proposed and investigated from the point of view of their consistency with generalized conformal transformations. It is shown that every such theory can be represented on-shell by a purely metric STT possessing the same solutions for a metric and a scalar field. A set of generalized invariants is also proposed. This extends the formalism previously introduced in cite{kozak2019}. We then apply the formalism to Starobinsky model, write down the Friedmann equations for three possible cases: metric, Palatini and hybrid metric-Palatini, and compare some inflationary observables.
Using the Ponce de Leon background metric, which describes a 5D universe in an apparent vacuum: $bar{G}_{AB}=0$, we study the effective 4D evolution of both, the inflaton and gauge-invariant scalar metric fluctuations, in the recently introduced model of space time matter inflation.
M. L. Pucheu
,C. Romero
,M. Bellini
.
(2015)
.
"Gauge invariant fluctuations of the metric during inflation from new scalar-tensor Weyl-Integrable gravity model"
.
Jose Edgar Madriz Aguilar
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا