Do you want to publish a course? Click here

Fractal structures for the Jacobi Hamiltonian of restricted three-body problem

101   0   0.0 ( 0 )
 Added by Jos\\'e Lages
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the dynamical chaos and integrable motion in the planar circular restricted three-body problem and determine the fractal dimension of the spiral strange repeller set of non-escaping orbits at different values of mass ratio of binary bodies and of Jacobi integral of motion. We find that the spiral fractal structure of the Poincare section leads to a spiral density distribution of particles remaining in the system. We also show that the initial exponential drop of survival probability with time is followed by the algebraic decay related to the universal algebraic statistics of Poincare recurrences in generic symplectic maps.



rate research

Read More

We present an extensive comparison between the statistical properties of non-hierarchical three-body systems and the corresponding three-body theoretical predictions. We perform and analyze 1 million realizations for each different initial condition considering equal and unequal mass three-body systems to provide high accuracy statistics. We measure 4 quantities characterizing the statistical distribution of ergodic disintegrations: escape probability of each body, the characteristic exponent for escapes by a narrow margin, predicted absorptivity as a function of binary energy and binary angular momentum, and, finally, the lifetime distribution. The escape probabilities are shown to be in agreement down to the 1% level with the emissivity-blind, flux-based theoretical prediction. This represents a leap in accuracy compared to previous three-body statistical theories. The characteristic exponent at the threshold for marginally unbound escapes is an emissivity-independent flux-based prediction, and the measured values are found to agree well with the prediction. We interpret both tests as strong evidence for the flux-based three-body statistical formalism. The predicted absorptivity and lifetime distributions are measured to enable future tests of statistical theories.
This contribution investigates the properties of a category of orbits around Enceladus. In a previous investigation, a set of heteroclinic connections were designed between halo orbits around the equilibrium points L1 and L2 of the circular restricted three-body problem with Saturn and Enceladus as primaries. The geometrical characteristics of those trajectories makes them good candidates as science orbits for the extended observation of the surface of Enceladus: they are highly inclined, they approach the moon and they are maneuver-free. However, the low heights above the surface and the strong perturbing effect of Saturn require a study of the influence of the polar flattening of the primaries. Therefore, those solutions are here reconsidered with a dynamical model that includes the effect of the oblateness of Saturn and Enceladus, separately and in combination. The dynamical equivalents of the halo orbits around the equilibrium points L1 and L2 and their stable and unstable hyperbolic invariant manifolds are obtained in the perturbed models, and maneuver-free heteroclinic connections are identified. A comparison with the corresponding solutions of the unperturbed problem shows that qualitative and quantitative features are not significantly altered in the perturbed model. The results confirm the scientific value of the solutions obtained in the classical circular restricted three-body problem and suggests that the simpler model can be used in a preliminary feasibility analysis.
65 - C. Beauge , P.M. Cincotta 2019
We present a numerical study of the application of the Shannon entropy technique to the planar restricted three-body problem in the vicinity of first-order interior mean-motion resonances with the perturber. We estimate the diffusion coefficient for a series of initial conditions and compare the results with calculations obtained from the time evolution of the variance in the semimajor-axis and eccentricity plane. Adopting adequate normalization factors, both methods yield comparable results, although much shorter integration times are required for entropy calculations. A second advantage of the use of entropy is that it is possible to obtain reliable results even without the use of ensembles or analysis restricted to surfaces of section or representative planes. This allows for a much more numerically efficient tool that may be incorporated into a working N-body code and applied to numerous dynamical problems in planetary dynamics. Finally, we estimate instability times for a series of initial conditions in the 2/1 and 3/2 mean-motion resonances and compare them with times of escape obtained from directed N-body simulations. We find very good agreement in all cases, not only with respect to average values but also in their dispersion for near-by trajectories
125 - Barak Kol 2021
The three-body problem is a fundamental long-standing open problem, with applications in all branches of physics, including astrophysics, nuclear physics and particle physics. In general, conserved quantities allow to reduce the formulation of a mechanical problem to fewer degrees of freedom, a process known as dynamical reduction. However, extant reductions are either non-general, or hide the problems symmetry or include unexplained definitions. This paper presents a dynamical reduction that avoids these issues, and hence is general and natural. Any three-body configuration defines a triangle, and its orientation in space. Accordingly, we decompose the dynamical variables into the geometry (shape + size) and orientation of the triangle. The geometry variables are shown to describe the motion of an abstract point in a curved 3d space, subject to a potential-derived force and a magnetic-like force with a monopole charge. The orientation variables are shown to obey a dynamics analogous to the Euler equations for a rotating rigid body, only here the moments of inertia depend on the geometry variables, rather than being constant. The reduction rests on a novel symmetric solution to the center of mass constraint inspired by Lagranges solution to the cubic. The formulation of the orientation variables is novel and rests on a little known generalization of the Euler-Lagrange equations to non-coordinate velocities. Applications to special exact solutions and to the statistical solution are described or discussed. Moreover, a generalization to the four-body problem is presented.
We study the influence of relativity on the chaotic properties and dynamical outcomes of an unstable triple system; the Pythagorean three-body problem. To this end, we extend the Brutus N-body code to include Post-Newtonian pairwise terms up to 2.5 order, and the first order Taylor expansion to the Einstein-Infeld-Hoffmann equations of motion. The degree to which our system is relativistic depends on the scaling of the total mass (the unit size was 1 parsec). Using the Brutus method of convergence, we test for time-reversibility in the conservative regime, and demonstrate that we are able to obtain definitive solutions to the relativistic three-body problem. It is also confirmed that the minimal required numerical accuracy for a successful time-reversibility test correlates with the amplification factor of an initial perturbation. When we take into account dissipative effects through gravitational wave emission, we find that the duration of the resonance, and the amount of exponential growth of small perturbations depend on the mass scaling. For a unit mass <= 10 MSun, the system behavior is indistinguishable from the Newtonian case, and the resonance always ends in a binary and one escaping body. For a mass scaling up to 1e7 MSun, relativity gradually becomes more prominent, but the majority of the systems still dissolve. The first mergers start to appear for a mass of ~1e5 MSun, and between 1e7 MSun and 1e9 MSun all systems end prematurely in a merger. These mergers are preceded by a gravitational wave driven in-spiral. For a mass scaling >= 1e9 MSun, all systems result in a gravitational wave merger upon the first close encounter. Relativistic three-body encounters thus provide an efficient pathway for resolving the final parsec problem. The onset of mergers at the characteristic mass scale of 1e7 MSun potentially leaves an imprint in the mass function of supermassive black holes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا