The Shape of Saturns Huygens Ringlet Viewed by Cassini ISS


Abstract in English

A new model for the shape of the prominent eccentric ringlet in the gap exterior to Saturns B-ring is developed based on Cassini imaging observations taken over about 8 years. Unlike previous treatments, the new model treats each edge of the ringlet separately. The Keplerian component of the model is consistent with results derived from Voyager observations, and $m=2$ modes forced by the nearby Mimas 2:1 Lindblad resonance are seen. Additionally, a free $m=2$ mode is seen on the outer edge of the ringlet. Significant irregular structure that cannot be described using normal-mode analysis is seen on the ringlet edges as well. Particularly on the inner edge, that structure remains coherent over multi-year intervals, moving at the local Keplerian rate. We interpret the irregular structure as the signature of embedded massive bodies. The long coherence time suggests the responsible bodies are concentrated near the edge of the ringlet. Long wake-like structures originate from two locations on the inner edge of the ringlet, revealing the locations of the two most massive embedded bodies in that region. As with the Voyager observations, the Cassini data sets showed no correlation between the width and the radius of the ringlet as would be expected for a self-gravitating configuration, except for a brief interval during late 2006, when the width-radius relation was similar to those seen in most other narrow eccentric ringlets in the Solar System.

Download