We present here the electronic structure and optical properties of InGaAs quantum wells with barrier doped with Manganese. We calculated the electronic states and optical emission within the envelope function and effective mass approximations using the spin-density functional theory in the presence of an external magnetic field. We observe magneto-oscillations of the Landau levels at low-magnetic fields (B < 5 T) that are dominated by the magnetic interaction between holes spin and Mn spin, while at high magnetic fields the spin-polarization of the hole gas is the dominant effect. Our results also show that a gate voltage alter significantly the magneto-oscillations of the emission energy and may be an external control parameter for the magnetic properties of the system. Finally, we discuss the influence of the Landau Levels oscillations in the emission spectra and compare with available experimental.