Do you want to publish a course? Click here

Magnetic Reconnection Rates and Energy Release in a Confined X-class Flare

193   0   0.0 ( 0 )
 Added by Astrid Veronig
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the energy-release process in the confined X1.6 flare that occurred on 22 October 2014 in AR 12192. Magnetic-reconnection rates and reconnection fluxes are derived from three different data sets: space-based data from the Atmospheric Imaging Assembly (AIA) 1600 {AA} filter onboard the Solar Dynamics Observatory (SDO) and ground-based H$alpha$ and Ca II K filtergrams from Kanzelhohe Observatory. The magnetic-reconnection rates determined from the three data sets all closely resemble the temporal profile of the hard X-rays measured by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI), which are a proxy for the flare energy released into high-energy electrons. The total magnetic-reconnection flux derived lies between $4.1 times 10^{21}$ Mx (AIA 1600 {AA}) and $7.9 times 10^{21}$ Mx (H$alpha$), which corresponds to about 2 to 4% of the total unsigned flux of the strong source AR. Comparison of the magnetic-reconnection flux dependence on the GOES class for 27 eruptive events collected from previous studies (covering B to $>$X10 class flares) reveals a correlation coefficient of $approx 0.8$ in double-logarithmic space. The confined X1.6 class flare under study lies well within the distribution of the eruptive flares. The event shows a large initial separation of the flare ribbons and no separation motion during the flare. In addition, we note enhanced emission at flare-ribbon structures and hot loops connecting these structures before the event starts. These observations are consistent with the emerging-flux model, where newly emerging small flux tubes reconnect with pre-existing large coronal loops.



rate research

Read More

Solar flares are often associated with coronal eruptions, but there are confined ones without eruption, even for some X-class flares. How such large flares occurred and why they are confined are still not well understood. Here we studied a confined X2.2 flare in NOAA 12673 on 2017 September 6. It exhibits two episodes of flare brightening with rather complex, atypical ribbons. Based on topology analysis of extrapolated coronal magnetic field, we revealed that there is a two-step magnetic reconnection process during the flare. Prior to the flare, there is a magnetic flux rope (MFR) with one leg rooted in a rotating sunspot. Neighboring to the leg is a magnetic null-point structure. The sunspot drives the MFR to expand, pushing magnetic flux to the null point, and reconnection is first triggered there. The disturbance from the null-point reconnection triggers the second reconnection, i.e., a tether-cutting reconnection below the rope. However, these two reconnections failed to produce an eruption, because the rope is firmly held by its strapping flux. Furthermore, we compared this flare with an eruptive X9.3 flare in the same region with 2 hours later, which has a similar MFR configuration. The key difference between them is that, for the confined flare, the MFR is fully below the threshold of torus instability, while for the eruptive one, the MFR reaches entirely above the threshold. This study provides a good evidence supporting that reconnection alone may not be able to trigger eruption, rather, MHD instability plays a more important role.
In this paper, we present a multi-wavelength analysis of an eruptive white-light M3.2 flare which occurred in active region NOAA 10486 on November 1, 2003. Excellent set of high resolution observations made by RHESSI and TRACE provide clear evidence of significant pre-flare activities for ~9 minutes in the form of an initiation phase observed at EUV/UV wavelengths followed by the X-ray precursor phase. During the initiation phase, we observed localized brightenings in the highly sheared core region close to the filament and interactions among short EUV loops overlying the filament which led to the opening of magnetic field lines. The X-ray precursor phase is manifested in RHESSI measurements below ~30 keV and coincided with the beginning of flux emergence at the flaring location along with early signatures of the eruption. From the RHESSI observations, we conclude that both plasma heating and electron acceleration occurred during the precursor phase. The main flare is consistent with the standard flare model. However, after the impulsive phase, intense HXR looptop source was observed without significant footpoint emission. More intriguingly, for a brief period the looptop source exhibited strong HXR emission with energies up to 100 keV and significant non-thermal characteristics. The present study indicates a causal relation between the activities in the preflare and main flare. We also conclude that pre-flare activities, occurred in the form of subtle magnetic reorganization along with localized magnetic reconnection, played a crucial role in destabilizing the active region filament leading to solar eruptive flare and associated large-scale phenomena.
We present analysis of C7.0 solar flare of Febrary 17, 2013, revealing a strong helioseismic response (sunquake) caused by a very compact impact in the photosphere. This is the weakest known C-class flare generating a sunquake event. To investigate possible mechanisms of this event, and to understand the role of accelerated charged particles and photospheric electric currents, we use data from three space observatories: Ramaty High Energy Solar Spectroscopic Imager (RHESSI), Solar Dynamics Observatory (SDO) and Geostationary Operational Environmental Satellite (GOES). We find that the photospheric flare impact does not spatially correspond to the strongest HXR emission source, but both of these events are parts of the same energy release. Our analysis reveals a close association of the flare energy release with a rapid increase of the electric currents, and suggests that the sunquake initiation is unlikely to be explained by the impact of high-energy electrons but may be associated with a rapid current dissipation or a localized impulsive Lorentz force.
We present SDO/AIA observations of an eruptive X-class flare of July 12, 2012, and compare its evolution with the predictions of a 3D numerical simulation. We focus on the dynamics of flare loops that are seen to undergo slipping reconnection during the flare. In the AIA 131A observations, lower parts of 10 MK flare loops exhibit an apparent motion with velocities of several tens of km/s along the developing flare ribbons. In the early stages of the flare, flare ribbons consist of compact, localized bright transition-region emission from the footpoints of the flare loops. A DEM analysis shows that the flare loops have temperatures up to the formation of Fe XXIV. A series of very long, S-shaped loops erupt, leading to a CME observed by STEREO. The observed dynamics are compared with the evolution of magnetic structures in the standard solar flare model in 3D. This model matches the observations well, reproducing both the apparently slipping flare loops, S-shaped erupting loops, and the evolution of flare ribbons. All of these processes are explained via 3D reconnection mechanisms resulting from the expansion of a torus-unstable flux rope. The AIA observations and the numerical model are complemented by radio observations showing a noise storm in the metric range. Dm-drifting pulsation structures occurring during the eruption indicate plasmoid ejection and enhancement of reconnection rate. The bursty nature of radio emission shows that the slipping reconnection is still intermittent, although it is observed to persist for more than an hour.
We present observations of electron energization in magnetic reconnection outflows during the pre-impulsive phase of solar flare SOL2012-07-19T05:58. During a time-interval of about 20 minutes, starting 40 minutes before the onset of the impulsive phase, two X-ray sources were observed in the corona, one above the presumed reconnection region and one below. For both of these sources, the mean electron distribution function as a function of time is determined over an energy range from 0.1~keV up to several tens of keV, for the first time. This is done by simultaneous forward fitting of X-ray and EUV data. Imaging spectroscopy with RHESSI provides information on the high-energy tail of the electron distribution in these sources while EUV images from SDO/AIA are used to constrain the low specific electron energies. The measured electron distribution spectrum in the magnetic reconnection outflows is consistent with a time-evolving kappa-distribution with $kappa =3.5-5.5$. The spectral evolution suggests that electrons are accelerated to progressively higher energies in the source above the reconnection region, while in the source below, the spectral shape does not change but an overall increase of the emission measure is observed, suggesting density increase due to evaporation. The main mechanisms by which energy is transported away from the source regions are conduction and free-streaming electrons. The latter dominates by more than one order of magnitude and is comparable to typical non-thermal energies during the hard X-ray peak of solar flares, suggesting efficient acceleration even during this early phase of the event.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا