Structural Signature of Slow and Heterogeneous Dynamics in Glass-Forming Liquids


Abstract in English

One of the central problems of the liquid-glass transition is whether there is a structural signature that can qualitatively distinguish different dynamic behaviors at different degrees of supercooling. Here, we propose a novel structural characterization based on the spatial correlation of local density and we show the locally dense-packed structural environment has a direct link with the slow dynamics as well as dynamic heterogeneity in glass-formers. We find that particles with large local density relax slowly and the size of cluster formed by the dense-packed particles increases with decreasing the temperature. Moreover, the extracted static length scale shows clear correlation with the relaxation time at different degrees of supercooling. This suggests that the temporarily but continuously formed locally dense-packed structural environment may be the structural origin of slow dynamics and dynamic heterogeneity of the glass-forming liquids.

Download