Do you want to publish a course? Click here

The Panchromatic Hubble Andromeda Treasury VIII: A Wide-Area, High-Resolution Map of Dust Extinction in M31

142   0   0.0 ( 0 )
 Added by J. J. Dalcanton
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We map the distribution of dust in M31 at 25pc resolution, using stellar photometry from the Panchromatic Hubble Andromeda Treasury. We develop a new mapping technique that models the NIR color-magnitude diagram (CMD) of red giant branch (RGB) stars. The model CMDs combine an unreddened foreground of RGB stars with a reddened background population viewed through a log-normal column density distribution of dust. Fits to the model constrain the median extinction, the width of the extinction distribution, and the fraction of reddened stars. The resulting extinction map has >4 times better resolution than maps of dust emission, while providing a more direct measurement of the dust column. There is superb morphological agreement between the new map and maps of the extinction inferred from dust emission by Draine et al. 2014. However, the widely-used Draine & Li (2007) dust models overpredict the observed extinction by a factor of ~2.5, suggesting that M31s true dust mass is lower and that dust grains are significantly more emissive than assumed in Draine et al. (2014). The discrepancy we identify is consistent with similar findings in the Milky Way by the Planck Collaboration (2015), but has a more complex dependence on parameters from the Draine & Li (2007) dust models. We also show that the discrepancy with the Draine et al. (2014) map is lowest where the interstellar radiation field has a harder spectrum than average. We discuss possible improvements to the CMD dust mapping technique, and explore further applications.



rate research

Read More

We present a study of spatial variations in the metallicity of old red giant branch stars in the Andromeda galaxy. Photometric metallicity estimates are derived by interpolating isochrones for over seven million stars in the Panchromatic Hubble Andromeda Treasury (PHAT) survey. This is the first systematic study of stellar metallicities over the inner 20 kpc of Andromedas galactic disk. We see a clear metallicity gradient of $-0.020pm0.004$ dex/kpc from $sim4-20$ kpc assuming a constant RGB age. This metallicity gradient is derived after correcting for the effects of photometric bias and completeness and dust extinction and is quite insensitive to these effects. The unknown age gradient in M31s disk creates the dominant systematic uncertainty in our derived metallicity gradient. However, spectroscopic analyses of galaxies similar to M31 show that they typically have small age gradients that make this systematic error comparable to the 1$sigma$ error on our metallicity gradient measurement. In addition to the metallicity gradient, we observe an asymmetric local enhancement in metallicity at radii of 3-6 kpc that appears to be associated with Andromedas elongated bar. This same region also appears to have an enhanced stellar density and velocity dispersion.
The Panchromatic Hubble Andromeda Treasury (PHAT) is an on-going HST Multicycle Treasury program to image ~1/3 of M31s star forming disk in 6 filters, from the UV to the NIR. The full survey will resolve the galaxy into more than 100 million stars with projected radii from 0-20 kpc over a contiguous 0.5 square degree area in 828 orbits, producing imaging in the F275W and F336W filters with WFC3/UVIS, F475W and F814W with ACS/WFC, and F110W and F160W with WFC3/IR. The resulting wavelength coverage gives excellent constraints on stellar temperature, bolometric luminosity, and extinction for most spectral types. The photometry reaches SNR=4 at F275W=25.1, F336W=24.9, F475W=27.9, F814W=27.1, F110W=25.5, and F160W=24.6 for single pointings in the uncrowded outer disk; however, the optical and NIR data are crowding limited, and the deepest reliable magnitudes are up to 5 magnitudes brighter in the inner bulge. All pointings are dithered and produce Nyquist-sampled images in F475W, F814W, and F160W. We describe the observing strategy, photometry, astrometry, and data products, along with extensive tests of photometric stability, crowding errors, spatially-dependent photometric biases, and telescope pointing control. We report on initial fits to the structure of M31s disk, derived from the density of RGB stars, in a way that is independent of the assumed M/L and is robust to variations in dust extinction. These fits also show that the 10 kpc ring is not just a region of enhanced recent star formation, but is instead a dynamical structure containing a significant overdensity of stars with ages >1 Gyr. (Abridged)
We present the Bayesian Extinction And Stellar Tool (BEAST), a probabilistic approach to modeling the dust extinguished photometric spectral energy distribution of an individual star while accounting for observational uncertainties common to large resolved star surveys. Given a set of photometric measurements and an observational uncertainty model, the BEAST infers the physical properties of the stellar source using stellar evolution and atmosphere models and constrains the line of sight extinction using a newly developed mixture model that encompasses the full range of dust extinction curves seen in the Local Group. The BEAST is specifically formulated for use with large multi-band surveys of resolved stellar populations. Our approach accounts for measurement uncertainties and any covariance between them due to stellar crowding (both systematic biases and uncertainties in the bias) and absolute flux calibration, thereby incorporating the full information content of the measurement. We illustrate the accuracy and precision possible with the BEAST using data from the Panchromatic Hubble Andromeda Treasury. While the BEAST has been developed for this survey, it can be easily applied to similar existing and planned resolved star surveys.
We map the star formation history across M31 by fitting stellar evolution models to color-magnitude diagrams of each 83${times}$83$$ (0.3$times$1.4 kpc, deprojected) region of the PHAT survey outside of the innermost 6${times}$12$$ portion. We find that most of the star formation occurred prior to $sim$8 Gyr ago, followed by a relatively quiescent period until $sim$4 Gyr ago, a subsequent star formation episode about 2 Gyr ago and a return to relative quiescence. There appears to be little, if any, structure visible for populations with ages older than 2 Gyr, suggesting significant mixing since that epoch. Finally, assuming a Kroupa IMF from 0.1$-$100 M$_{odot}$, we find that the total amount of star formation over the past 14 Gyr in the area over which we have fit models is 5${times}$10$^{10}$ M$_{odot}$. Fitting the radial distribution of this star formation and assuming azimuthal symmetry, (1.5$pm$0.2)${times}$10$^{11}$ M$_{odot}$ of stars have formed in the M31 disk as a whole, (9$pm$2)${times}$10$^{10}$ M$_{odot}$ of which has likely survived to the present after accounting for evolutionary effects. This mass is about one fifth of the total dynamical mass of M31.
365 - Philip Rosenfield 2012
As part of the Panchromatic Hubble Andromeda Treasury (PHAT) multi-cycle program, we observed a 12 times 6.5 area of the bulge of M31 with the WFC3/UVIS filters F275W and F336W. From these data we have assembled a sample of sim4000 UV-bright, old stars, vastly larger than previously available. We use updated Padova stellar evolutionary tracks to classify these hot stars into three classes: Post-AGB stars (P-AGB), Post-Early AGB (PE-AGB) stars and AGB-manque stars. P-AGB stars are the end result of the asymptotic giant branch (AGB) phase and are expected in a wide range of stellar populations, whereas PE-AGB and AGB-manque (together referred to as the hot post-horizontal branch; HP-HB) stars are the result of insufficient envelope masses to allow a full AGB phase, and are expected to be particularly prominent at high helium or {alpha} abundances when the mass loss on the RGB is high. Our data support previous claims that most UV-bright sources in the bulge are likely hot (extreme) horizontal branch stars (EHB) and their progeny. We construct the first radial profiles of these stellar populations, and show that they are highly centrally concentrated, even more so than the integrated UV or optical light. However, we find that this UV-bright population does not dominate the total UV luminosity at any radius, as we are detecting only the progeny of the EHB stars that are the likely source of the UVX. We calculate that only a few percent of MS stars in the central bulge can have gone through the HP-HB phase and that this percentage decreases strongly with distance from the center. We also find that the surface density of hot UV-bright stars has the same radial variation as that of low-mass X-ray binaries. We discuss age, metallicity, and abundance variations as possible explanations for the observed radial variation in the UV-bright population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا