Do you want to publish a course? Click here

Nonlocality of orthogonal product basis quantum states

153   0   0.0 ( 0 )
 Added by Shao-Ming Fei
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the local indistinguishability of mutually orthogonal product basis quantum states in the high-dimensional quantum system. In the quantum system of $mathbb{C}^dotimesmathbb{C}^d$, where $d$ is odd, Zhang emph{et al} have constructed $d^2$ orthogonal product basis quantum states which are locally indistinguishable in [Phys. Rev. A. {bf 90}, 022313(2014)]. We find a subset contains with $6d-9$ orthogonal product states which are still locally indistinguishable. Then we generalize our method to arbitrary bipartite quantum system $mathbb{C}^motimesmathbb{C}^n$. We present a small set with only $3(m+n)-9$ orthogonal product states and prove these states are LOCC indistinguishable. Even though these $3(m+n)-9$ product states are LOCC indistinguishable, they can be distinguished by separable measurements. This shows that separable operations are strictly stronger than the local operations and classical communication.



rate research

Read More

The general conditions for the orthogonal product states of the multi-state systems to be used in quantum key distribution (QKD) are proposed, and a novel QKD scheme with orthogonal product states in the 3x3 Hilbert space is presented. We show that this protocol has many distinct features such as great capacity, high efficiency. The generalization to nxn systems is also discussed and a fancy limitation for the eavesdroppers success probability is reached.
58 - Hao Shu 2020
In this paper, we consider the LOCC distinguishability of product states. We employ polygons to analyse orthogonal product states in any system to show that with LOCC protocols, to distinguish 7 orthogonal product states, one can exclude 4 states via a single copy. In bipartite systems, this result implies that N orthogonal product states are LOCC distinguishable if $left lceil frac {N}{4}right rceil$ copies are allowed, where $left lceil lright rceil$ for a real number $l$ means the smallest integer not less than $l$. In multipartite systems, this result implies that N orthogonal product states are LOCC distinguishable if $left lceil frac {N}{4}right rceil +1$ copies are allowed. We also give a theorem to show how many states can be excluded via a single copy if we are distinguishing n orthogonal product states by LOCC protocols in a bipartite system. Not like previous results, our result is a general result for any set of orthogonal product states in any system.
Entanglement of quasiclassical (coherent) states of two harmonic oscillators leads to striking quantum effects and is useful for quantum technologies. These effects and applications are closely related to nonlocal correlations inherent in these states, manifested by the violation of Bell inequalities. With previous frameworks, this violation is limited by the size of the system, which does not approach the maximum even when the amount of entanglement approaches its maximum. Here we propose a new version of Bell correlation operators, with which a nearly maximal violation can be obtained as long as the associated entanglement approximates to the maximum. Consequently, the revealed nonlocality is significantly stronger than those with previous frameworks for a wide range of the system size. We present a new scheme for realizing the gate necessary for measurement of the nonlocal correlations. In addition to the use in test of quantum nonlocality, this gate is useful for quantum information processing with coherent states
Recently, Halder emph{et al.} [S. Halder emph{et al.}, Phys. Rev. Lett. textbf{122}, 040403 (2019)] present two sets of strong nonlocality of orthogonal product states based on the local irreducibility. However, for a set of locally indistinguishable orthogonal entangled states, the remaining question is whether the states can reveal strong quantum nonlocality. Here we present a general definition of strong quantum nonlocality based on the local indistinguishability. Then, in $2 otimes 2 otimes 2$ quantum system, we show that a set of orthogonal entangled states is locally reducible but locally indistinguishable in all bipartitions, which means the states have strong nonlocality. Furthermore, we generalize the result in N-qubit quantum system, where $Ngeqslant 3$. Finally, we also construct a class of strong nonlocality of entangled states in $dotimes dotimes cdots otimes d, dgeqslant 3$. Our results extend the phenomenon of strong nonlocality for entangled states.
We study the nonlocal properties of states resulting from the mixture of an arbitrary entangled state rho of two d-dimensional systems and completely depolarized noise, with respective weights p and 1-p. We first construct a local model for the case in which rho is maximally entangled and p at or below a certain bound. We then extend the model to arbitrary rho. Our results provide bounds on the resistance to noise of the nonlocal correlations of entangled states. For projective measurements, the critical value of the noise parameter p for which the state becomes local is at least asymptotically log(d) larger than the critical value for separability.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا