Do you want to publish a course? Click here

Galaxy And Mass Assembly (GAMA): the wavelength dependence of galaxy structure versus redshift and luminosity

72   0   0.0 ( 0 )
 Added by Rebecca Kennedy
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study how the sizes and radial profiles of galaxies vary with wavelength, by fitting Sersic functions simultaneously to imaging in nine optical and near-infrared bands. To quantify the wavelength dependence of effective radius we use the ratio, $mathcal{R}$, of measurements in two restframe bands. The dependence of Sersic index on wavelength, $mathcal{N}$, is computed correspondingly. Vulcani et al. (2014) have demonstrated that different galaxy populations present sharply contrasting behaviour in terms of $mathcal{R}$ and $mathcal{N}$. Here we study the luminosity dependence of this result. We find that at higher luminosities, early-type galaxies display a more substantial decrease in effective radius with wavelength, whereas late-types present a more pronounced increase in Sersic index. The structural contrast between types thus increases with luminosity. By considering samples at different redshifts, we demonstrate that lower data quality reduces the apparent difference between the main galaxy populations. However, our conclusions remain robust to this effect. We show that accounting for different redshift and luminosity selections partly reconciles the size variation measured by Vulcani et al. with the weaker trends found by other recent studies. Dividing galaxies by visual morphology confirms the behaviour inferred using morphological proxies, although the sample size is greatly reduced. Finally, we demonstrate that varying dust opacity and disc inclination can account for features of the joint distribution of $mathcal{R}$ and $mathcal{N}$ for late-type galaxies. However, dust does not appear to explain the highest values of $mathcal{R}$ and $mathcal{N}$. The bulge-disc nature of galaxies must also contribute to the wavelength-dependence of their structure.



rate research

Read More

Using single-component fits to SDSS/UKIDSS images of galaxies in the G09 region of the GAMA survey we study radial colour gradients across the galaxy population. We use the multiwavelength information provided by MegaMorph analysis of galaxy light profiles to calculate intrinsic colour gradients, and divide into six subsamples split by overall S{e}rsic index ($n$) and galaxy colour. We find a bimodality in the colour gradients of high- and low-$n$ galaxies in all wavebands, which varies with overall galaxy luminosity. Global trends in colour gradients therefore result from combining the contrasting behaviour of a number of different galaxy populations. The ubiquity of strong negative colour gradients supports the picture of inside-out growth through gas accretion for blue, low-$n$ galaxies, and through dry minor mergers for red, high-$n$ galaxies. An exception is the blue high-n population, with properties indicative of dissipative major mergers.
We use 80922 galaxies in the Galaxy And Mass Assembly (GAMA) survey to measure the galaxy luminosity function (LF) in different environments over the redshift range 0.04<z<0.26. The depth and size of GAMA allows us to define samples split by colour and redshift to measure the dependence of the LF on environment, redshift and colour. We find that the LF varies smoothly with overdensity, consistent with previous results, with little environmental dependent evolution over the last 3 Gyrs. The modified GALFORM model predictions agree remarkably well with our LFs split by environment, particularly in the most overdense environments. The LFs predicted by the model for both blue and red galaxies are consistent with GAMA for the environments and luminosities at which such galaxies dominate. Discrepancies between the model and the data seen in the faint end of the LF suggest too many faint red galaxies are predicted, which is likely to be due to the over-quenching of satellite galaxies. The excess of bright blue galaxies predicted in underdense regions could be due to the implementation of AGN feedback not being sufficiently effective in the lower mass halos.
With a large sample of bright, low-redshift galaxies with optical$-$near-IR imaging from the GAMA survey we use bulge-disc decompositions to understand the wavelength-dependent behavior of single-Sersic structural measurements. We denote the variation in single-Sersic index with wavelength as $mathcal{N}$, likewise for effective radius we use $mathcal{R}$. We find that most galaxies with a substantial disc, even those with no discernable bulge, display a high value of $mathcal{N}$. The increase in Sersic index to longer wavelengths is therefore intrinsic to discs, apparently resulting from radial variations in stellar population and/or dust reddening. Similarly, low values of $mathcal{R}$ ($<$ 1) are found to be ubiquitous, implying an element of universality in galaxy colour gradients. We also study how bulge and disc colour distributions vary with galaxy type. We find that, rather than all bulges being red and all discs being blue in absolute terms, both components become redder for galaxies with redder total colours. We even observe that bulges in bluer galaxies are typically bluer than discs in red galaxies, and that bulges and discs are closer in colour for fainter galaxies. Trends in total colour are therefore not solely due to the colour or flux dominance of the bulge or disc.
How do galaxy properties (such as stellar mass, luminosity, star formation rate, and morphology) and their evolution depend on the mass of their host dark matter halo? Using the Galaxy and Mass Assembly (GAMA) group catalogue, we address this question by exploring the dependence on host halo mass of the luminosity function (LF) and stellar mass function (SMF) for grouped galaxies subdivided by colour, morphology and central/satellite. We find that spheroidal galaxies in particular dominate the bright and massive ends of the LF and SMF, respectively. More massive haloes host more massive and more luminous central galaxies. The satellite LF and SMF respectively show a systematic brightening of characteristic magnitude, and increase in characteristic mass, with increasing halo mass. In contrast to some previous results, the faint-end and low-mass slopes show little systematic dependence on halo mass. Semi-analytic models and simulations show similar or enhanced dependence of central mass and luminosity on halo mass. Faint and low-mass simulated satellite galaxies are remarkably independent of halo mass, but the most massive satellites are more common in more massive groups. In the first investigation of low-redshift LF and SMF evolution in group environments, we find that the red/blue ratio of galaxies in groups has increased since redshift $z approx 0.3$ relative to the field population. This observation strongly suggests that quenching of star formation in galaxies as they are accreted into galaxy groups is a significant and ongoing process.
138 - D. J. Farrow 2015
We measure the projected 2-point correlation function of galaxies in the 180 deg$^2$ equatorial regions of the GAMA II survey, for four different redshift slices between z = 0.0 and z=0.5. To do this we further develop the Cole (2011) method of producing suitable random catalogues for the calculation of correlation functions. We find that more r-band luminous, more massive and redder galaxies are more clustered. We also find that red galaxies have stronger clustering on scales less than ~3 $h^{-1}$ Mpc. We compare to two differe
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا