Do you want to publish a course? Click here

On the velocity of moving relativistic unstable quantum systems

158   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English
 Authors K. Urbanowski




Ask ChatGPT about the research

We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of moving freely relativistic quantum unstable systems can not be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: It is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.



rate research

Read More

103 - K. Urbanowski 2014
We study the survival probability of moving relativistic unstable particles with definite momentum $vec{p} eq 0$. The amplitude of the survival probability of these particles is calculated using its integral representation. We found decay curves of such particles for the quantum mechanical models considered. These model studies show that late time deviations of the survival probability of these particles from the exponential form of the decay law, that is the transition times region between exponential and non-expo-nen-tial form of the survival probability, should occur much earlier than it follows from the classical standard approach resolving itself into replacing time $t$ by $t/gamma$ (where $gamma$ is the relativistic Lorentz factor) in the formula for the survival probability and that the survival probabilities should tend to zero as $trightarrow infty$ much slower than one would expect using classical time dilation relation. Here we show also that for some physically admissible models of unstable states the computed decay curves of the moving particles have fluctuating form at relatively short times including times of order of the lifetime.
105 - A. Widom , J. Swain , 2015
It is argued that the zero point energy in quantum field theory is a reflection of the particle anti-particle content of the theory. This essential physical content is somewhat disguised in electromagnetic theory wherein the photon is its own anti-particle. To illustrate this point, we consider the case of a charged Boson theory $(pi^+,pi^-)$ wherein the particle and anti-particle can be distinguished by the charge $pm e$. Starting from the zero point energy, we derive the Boson pair production rate per unit time per unit volume from the vacuum in a uniform external electric field. The result is further generalized for arbitrary spin $s$.
We present the probability preserving description of the decaying particle within the framework of quantum mechanics of open systems taking into account the superselection rule prohibiting the superposition of the particle and vacuum. In our approach the evolution of the system is given by a family of completely positive trace preserving maps forming one-parameter dynamical semigroup. We give the Kraus representation for the general evolution of such systems which allows one to write the evolution for systems with two or more particles. Moreover, we show that the decay of the particle can be regarded as a Markov process by finding explicitly the master equation in the Lindblad form. We also show that there are remarkable restrictions on the possible strength of decoherence.
Adiabatic passage is a standard tool for achieving robust transfer in quantum systems. We show that, in the context of driven nonlinear Hamiltonian systems, adiabatic passage becomes highly non-robust when the target is unstable. We show this result for a generic (1:2) resonance, for which the complete transfer corresponds to a hyperbolic fixed point in the classical phase space featuring an adiabatic connectivity strongly sensitive to small perturbations of the model. By inverse engineering, we devise high-fidelity and robust partially non-adiabatic trajectories. They localize at the approach of the target near the stable manifold of the separatrix, which drives the dynamics towards the target in a robust way. These results can be applicable to atom-molecule Bose-Einstein condensate conversion and to nonlinear optics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا