We generalize the cohomological mirror duality of Borcea and Voisin in any dimension and for any number of factors. Our proof applies to all examples which can be constructed through Berglund-H{u}bsch duality. Our method is a variant of the so-called Landau-Ginzburg/Calabi-Yau correspondence of Calabi-Yau orbifolds with an involution that does not preserve the volume form. We deduce a version of mirror duality for the fixed loci of the involution, which are beyond the Calabi-Yau category and feature hypersurfaces of general type.