Do you want to publish a course? Click here

LEWIS: Latent Embeddings for Word Images and their Semantics

260   0   0.0 ( 0 )
 Added by Albert Gordo
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

The goal of this work is to bring semantics into the tasks of text recognition and retrieval in natural images. Although text recognition and retrieval have received a lot of attention in recent years, previous works have focused on recognizing or retrieving exactly the same word used as a query, without taking the semantics into consideration. In this paper, we ask the following question: emph{can we predict semantic concepts directly from a word image, without explicitly trying to transcribe the word image or its characters at any point?} For this goal we propose a convolutional neural network (CNN) with a weighted ranking loss objective that ensures that the concepts relevant to the query image are ranked ahead of those that are not relevant. This can also be interpreted as learning a Euclidean space where word images and concepts are jointly embedded. This model is learned in an end-to-end manner, from image pixels to semantic concepts, using a dataset of synthetically generated word images and concepts mined from a lexical database (WordNet). Our results show that, despite the complexity of the task, word images and concepts can indeed be associated with a high degree of accuracy



rate research

Read More

139 - Bei Shi , Wai Lam , Shoaib Jameel 2017
Word embedding models such as Skip-gram learn a vector-space representation for each word, based on the local word collocation patterns that are observed in a text corpus. Latent topic models, on the other hand, take a more global view, looking at the word distributions across the corpus to assign a topic to each word occurrence. These two paradigms are complementary in how they represent the meaning of word occurrences. While some previous works have already looked at using word embeddings for improving the quality of latent topics, and conversely, at using latent topics for improving word embeddings, such two-step methods cannot capture the mutual interaction between the two paradigms. In this paper, we propose STE, a framework which can learn word embeddings and latent topics in a unified manner. STE naturally obtains topic-specific word embeddings, and thus addresses the issue of polysemy. At the same time, it also learns the term distributions of the topics, and the topic distributions of the documents. Our experimental results demonstrate that the STE model can indeed generate useful topic-specific word embeddings and coherent latent topics in an effective and efficient way.
Rather than simply recognizing the action of a person individually, collective activity recognition aims to find out what a group of people is acting in a collective scene. Previ- ous state-of-the-art methods using hand-crafted potentials in conventional graphical model which can only define a limited range of relations. Thus, the complex structural de- pendencies among individuals involved in a collective sce- nario cannot be fully modeled. In this paper, we overcome these limitations by embedding latent variables into feature space and learning the feature mapping functions in a deep learning framework. The embeddings of latent variables build a global relation containing person-group interac- tions and richer contextual information by jointly modeling broader range of individuals. Besides, we assemble atten- tion mechanism during embedding for achieving more com- pact representations. We evaluate our method on three col- lective activity datasets, where we contribute a much larger dataset in this work. The proposed model has achieved clearly better performance as compared to the state-of-the- art methods in our experiments.
We propose a novel method for solving regression tasks using few-shot or weak supervision. At the core of our method is the fundamental observation that GANs are incredibly successful at encoding semantic information within their latent space, even in a completely unsupervised setting. For modern generative frameworks, this semantic encoding manifests as smooth, linear directions which affect image attributes in a disentangled manner. These directions have been widely used in GAN-based image editing. We show that such directions are not only linear, but that the magnitude of change induced on the respective attribute is approximately linear with respect to the distance traveled along them. By leveraging this observation, our method turns a pre-trained GAN into a regression model, using as few as two labeled samples. This enables solving regression tasks on datasets and attributes which are difficult to produce quality supervision for. Additionally, we show that the same latent-distances can be used to sort collections of images by the strength of given attributes, even in the absence of explicit supervision. Extensive experimental evaluations demonstrate that our method can be applied across a wide range of domains, leverage multiple latent direction discovery frameworks, and achieve state-of-the-art results in few-shot and low-supervision settings, even when compared to methods designed to tackle a single task.
We propose to learn word embeddings from visual co-occurrences. Two words co-occur visually if both words apply to the same image or image region. Specifically, we extract four types of visual co-occurrences between object and attribute words from large-scale, textually-annotated visual databases like VisualGenome and ImageNet. We then train a multi-task log-bilinear model that compactly encodes word meanings represented by each co-occurrence type into a single visual word-vector. Through unsupervised clustering, supervised partitioning, and a zero-shot-like generalization analysis we show that our word embeddings complement text-only embeddings like GloVe by better representing similarities and differences between visual concepts that are difficult to obtain from text corpora alone. We further evaluate our embeddings on five downstream applications, four of which are vision-language tasks. Augmenting GloVe with our embeddings yields gains on all tasks. We also find that random embeddings perform comparably to learned embeddings on all supervised vision-language tasks, contrary to conventional wisdom.
The need to address the scarcity of task-specific annotated data has resulted in concerted efforts in recent years for specific settings such as zero-shot learning (ZSL) and domain generalization (DG), to separately address the issues of semantic shift and domain shift, respectively. However, real-world applications often do not have constrained settings and necessitate handling unseen classes in unseen domains -- a setting called Zero-shot Domain Generalization, which presents the issues of domain and semantic shifts simultaneously. In this work, we propose a novel approach that learns domain-agnostic structured latent embeddings by projecting images from different domains as well as class-specific semantic text-based representations to a common latent space. In particular, our method jointly strives for the following objectives: (i) aligning the multimodal cues from visual and text-based semantic concepts; (ii) partitioning the common latent space according to the domain-agnostic class-level semantic concepts; and (iii) learning a domain invariance w.r.t the visual-semantic joint distribution for generalizing to unseen classes in unseen domains. Our experiments on the challenging DomainNet and DomainNet-LS benchmarks show the superiority of our approach over existing methods, with significant gains on difficult domains like quickdraw and sketch.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا