We consider the quantum (trajectories) filtering equation for the case when the system is driven by Bose field inputs prepared in an arbitrary non-zero mean Gaussian state. The a posteriori evolution of the system is conditioned by the results of a single or double homodyne measurements. The system interacting with the Bose field is a single cavity mode taken initially in a Gaussian state. We show explicit solutions using the method of characteristic functions to the filtering equations exploiting the linear Gaussian nature of the problem.
We introduce a general construction of master equations with memory kernel whose solutions are given by completely positive trace preserving maps. These dynamics going beyond the Lindblad paradigm are obtained with reference to classical renewal processes, so that they are termed quantum renewal processes. They can be described by means of semigroup dynamics interrupted by jumps, separated by independently distributed time intervals, following suitable waiting time distributions. In this framework, one can further introduce modified processes, in which the first few events follow different distributions. A crucial role, marking an important difference with respect to the classical case, is played by operator ordering. Indeed, for the same choice of basic quantum transformations, different quantum dynamics arise. In particular, for the case of modified processes, it is natural to consider the time inverted operator ordering, in which the last few events are distributed differently.
The interaction between matter and squeezed light has mostly been treated within the approximation that the field correlation time is small. Methods for treating squeezed light with more general correlations currently involve explicitly modeling the systems producing the light. We develop a general purpose input-output theory for a particular form of narrowband squeezed light -- a squeezed wave-packet mode -- that only cares about the statistics of the squeezed field and the shape of the wave packet. This formalism allows us to derive the input-output relations and the master equation. We also consider detecting the scattered field using photon counting and homodyne measurements which necessitates the derivation of the stochastic master equation. The non Markovian nature of the field manifests itself in the master equation as a coupled hierarchy of equations. We illustrate these with consequences for the decay and resonance fluorescence of two-level atoms in the presence of such fields.
We study a class of Markov chains that model the evolution of a quantum system subject to repeated measurements. Each Markov chain in this class is defined by a measure on the space of matrices. It is then given by a random product of correlated matrices taken from the support of the defining measure. We give natural conditions on this support that imply that the Markov chain admits a unique invariant probability measure. We moreover prove the geometric convergence towards this invariant measure in the Wasserstein metric. Standard techniques from the theory of products of random matrices cannot be applied under our assumptions, and new techniques are developed, such as maximum likelihood-type estimations.
Simple, controllable models play an important role to learn how to manipulate and control quantum resources. We focus here on quantum non-Markovianity and model the evolution of open quantum systems by quantum renewal processes. This class of quantum dynamics provides us with a phenomenological approach to characterise dynamics with a variety of non-Markovian behaviours, here described in terms of the trace distance between two reduced states. By adopting a trajectory picture for the open quantum system evolution, we analyse how non-Markovianity is influenced by the constituents defining the quantum renewal process, namely the time-continuous part of the dynamics, the type of jumps and the waiting time distributions. We focus not only on the mere value of the non-Markovianity measure, but also on how different features of the trace distance evolution are altered, including times and number of revivals.
Here we deal in a pedagogical way with an approach to construct an algebraic structure for the Quantum Mechanical measurement processes from the concept of emph{Measurement Symbol}. Such concept was conceived by Julian S. Schwinger and constitutes a fundamental piece in his variational formalism and its several applications.