Many-qubit entanglement is crucial for quantum information processing although its exploitation is hindered by the detrimental effects of the environment surrounding the many-qubit system. It is thus of importance to study the dynamics of general multipartite nonclassical correlation, including but not restricted to entanglement, under noise. We did this study for four-qubit GHZ state under most common noises in an experiment and found that nonclassical correlation is more robust than entanglement except when it is imposed to dephasing channel. Quantum discord presents a sudden transition in its dynamics for Pauli-X and Pauli-Y noises as well as Bell-diagonal states interacting with dephasing reservoirs and it decays monotonically for Pauli-Z and isotropic noises.
We examine the various properties of the three four-qubit monogamy relations, all of which introduce the power factors in the three-way entanglement to reduce the tripartite contributions. On the analytic ground as much as possible we try to find the minimal power factors, which make the monogamy relations hold if the power factors are larger than the minimal powers. Motivated to the three-qubit monogamy inequality we also examine whether those four-qubit monogamy relations provide the SLOCC-invariant four-way entanglement measures or not. Our analysis indicate that this is impossible provided that the monogamy inequalities are derived merely by introducing weighting power factors.
I calculate the mixed threetangle $tau_3[rho]$ for the reduced density matrices of the four-qubit representant states found in Phys. Rev. A {bf 65}, 052112 (2002). In most of the cases, the convex roof is obtained, except for one class, where I provide with a new upper bound, which is assumed to be very close to the convex roof. I compare with results published in Phys. Rev. Lett. {bf 113}, 110501 (2014). Since the method applied there usually results in higher values for the upper bound, in certain cases it can be understood that the convex roof is obtained exactly, namely when the zero-polytope where $tau_3$ vanishes shrinks to a single point.
We experimentally demonstrate a high-fidelity entanglement swapping and a generation of the Greenberger-Horne-Zeilinger~(GHZ) state using polarization-entangled photon pairs at telecommunication wavelength produced by spontaneous parametric down conversion with continuous-wave pump light. While spatially separated sources asynchronously emit photon pairs, the time-resolved photon detection guarantees the temporal indistinguishability of photons without active timing synchronizations of pump lasers and/or adjustment of optical paths. In the experiment, photons are sufficiently narrowed by fiber-based Bragg gratings with the central wavelengths of 1541~nm and 1580~nm, and detected by superconducting nanowire single-photon detectors with low timing jitters. Observed fidelities are 0.84 pm 0.04 and 0.70 pm 0.05 for the entanglement swapping and generation of the GHZ state, respectively.
Existing measures of bipartite nonclassical correlation that is typically characterized by nonvanishing nonlocalizable information under the zero-way CLOCC protocol are expensive in computational cost. We define and evaluate economical measures on the basis of a new class of maps, eigenvalue-preserving-but-not-completely-eigenvalue-preserving (EnCE) maps. The class is in analogy to the class of positive-but-not-completely-positive (PnCP) maps that have been commonly used in the entanglement theories. Linear and nonlinear EnCE maps are investigated. We also prove subadditivity of the measures in a form of logarithmic fidelity.
We show that not all 4-party pure states are GHZ reducible (i.e., can be generated reversibly from a combination of 2-, 3- and 4-party maximally entangled states by local quantum operations and classical communication asymptotically) through an example, we also present some properties of the relative entropy of entanglement for those 3-party pure states that are GHZ reducible, and then we relate these properties to the additivity of the relative entropy of entanglement.