No Arabic abstract
In this paper we study a $2+1$ dimensional system in which fermions are coupled to the self-dual topological vortex in $U(1) times U(1)$ Chern-Simons theory, where both $U(1)$ gauge symmetries are spontaneously broken. We consider two Abelian Higgs scalars with visible and hidden sectors coupled to a fermionic field through three interaction Lagrangians, where one of them violates the fermion number. Using a fine tuning procedure, we could obtain the number of the fermionic zero modes which is equal to the absolute value of the sum of the vortex numbers in the visible and hidden sectors.
In this paper we study the zero energy solutions of the Dirac equation in the background of a $Z_2$ vortex of a non-Abelian gauge model with three charged scalar fields. We determine the number of the fermionic zero modes giving their explicit form for two specific Ansatze.
The contribution of nontrivial vacuum (topological) excitations, more specifically vortex configurations of the self-dual Chern-Simons-Higgs model, to the functional partition function is considered. By using a duality transformation, we arrive at a representation of the partition function in terms of which explicit vortex degrees of freedom are coupled to a dual gauge field. By matching the obtained action to a field theory for the vortices, the physical properties of the model in the presence of vortex excitations are then studied. In terms of this field theory for vortices in the self-dual Chern-Simons Higgs model, we determine the location of the critical value for the Chern-Simons parameter below which vortex condensation can happen in the system. The effects of self-energy quantum corrections to the vortex field are also considered.
We study vortex solutions in Abelian Chern-Simons-Higgs theories with visible and hidden sectors. We first consider the case in which the two sectors are connected through a BF-like gauge mixing term with no explicit interaction between the the two scalars. Since first order Bogomolny equations do not exist in this case, we derive the second order field equations. We then proceed to an ${cal N}=2$ supersymmetric extension including a Higgs portal mixing among the visible and hidden charged scalars. As expected, Bogomolnyi equations do exist in this case and we study their string-like solutions numerically.
We study large $N$ 2+1 dimensional fermions in the fundamental representation of an $SU(N)_k$ Chern Simons gauge group in the presence of a uniform background magnetic field for the $U(1)$ global symmetry of this theory. The magnetic field modifies the Schwinger Dyson equation for the propagator in an interesting way; the product between the self energy and the Greens function is replaced by a Moyal star product. Employing a basis of functions previously used in the study of non-commutative solitons, we are able to exactly solve the Schwinger Dyson equation and so determine the fermion propagator. The propagator has a series of poles (and no other singularities) whose locations yield a spectrum of single particle energies at arbitrary t Hooft coupling and chemical potential. The usual free fermion Landau levels spectrum is shifted and broadened out; we compute the shifts and widths of these levels at arbitrary tHooft coupling. As a check on our results we independently solve for the propagators of the conjecturally dual theory of Chern Simons gauged large $N$ fundamental Wilson Fisher bosons also in a background magnetic field but this time only at zero chemical potential. The spectrum of single particle states of the bosonic theory precisely agrees with those of the fermionic theory under Bose-Fermi duality.
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is derived. For spatial noncommutativity it is studied up to second order in the noncommutativity parameter theta. A new noncommutative Chern-Simons action is defined in terms of ordinary fields, inspired by the dual action. Moreover, a transformation between noncommuting and ordinary fields is proposed.