In the statistical inference for long range dependent time series the shape of the limit distribution typically depends on unknown parameters. Therefore, we propose to use subsampling. We show the validity of subsampling for general statistics and long range dependent subordinated Gaussian processes which satisfy mild regularity conditions. We apply our method to a self-normalized change-point test statistic so that we can test for structural breaks in long range dependent time series without having to estimate any nuisance parameter. The finite sample properties are investigated in a simulation study. We analyze three data sets and compare our results to the conclusions of other authors.
Many popular robust estimators are $U$-quantiles, most notably the Hodges-Lehmann location estimator and the $Q_n$ scale estimator. We prove a functional central limit theorem for the sequential $U$-quantile process without any moment assumptions and under weak short-range dependence conditions. We further devise an estimator for the long-run variance and show its consistency, from which the convergence of the studentized version of the sequential $U$-quantile process to a standard Brownian motion follows. This result can be used to construct CUSUM-type change-point tests based on $U$-quantiles, which do not rely on bootstrapping procedures. We demonstrate this approach in detail at the example of the Hodges-Lehmann estimator for robustly detecting changes in the central location. A simulation study confirms the very good robustness and efficiency properties of the test. Two real-life data sets are analyzed.
We consider a high-dimensional regression model with a possible change-point due to a covariate threshold and develop the Lasso estimator of regression coefficients as well as the threshold parameter. Our Lasso estimator not only selects covariates but also selects a model between linear and threshold regression models. Under a sparsity assumption, we derive non-asymptotic oracle inequalities for both the prediction risk and the $ell_1$ estimation loss for regression coefficients. Since the Lasso estimator selects variables simultaneously, we show that oracle inequalities can be established without pretesting the existence of the threshold effect. Furthermore, we establish conditions under which the estimation error of the unknown threshold parameter can be bounded by a nearly $n^{-1}$ factor even when the number of regressors can be much larger than the sample size ($n$). We illustrate the usefulness of our proposed estimation method via Monte Carlo simulations and an application to real data.
The purpose of this note is to provide an approximation for the generalized bootstrapped empirical process achieving the rate in Kolmos et al. (1975). The proof is based on much the same arguments as in Horvath et al. (2000). As a consequence, we establish an approximation of the bootstrapped kernel-type density estimator
Structural changes occur in dynamic networks quite frequently and its detection is an important question in many situations such as fraud detection or cybersecurity. Real-life networks are often incompletely observed due to individual non-response or network size. In the present paper we consider the problem of change-point detection at a temporal sequence of partially observed networks. The goal is to test whether there is a change in the network parameters. Our approach is based on the Matrix CUSUM test statistic and allows growing size of networks. We show that the proposed test is minimax optimal and robust to missing links. We also demonstrate the good behavior of our approach in practice through simulation study and a real-data application.
In this presentation, we introduce a new method for change point analysis on the Hurst index for a piecewise fractional Brownian motion. We first set the model and the statistical problem. The proposed method is a transposition of the FDpV (Filtered Derivative with p-value) method introduced for the detection of change points on the mean in Bertrand et al. (2011) to the case of changes on the Hurst index. The underlying statistics of the FDpV technology is a new statistic estimator for Hurst index, so-called Increment Bernoulli Statistic (IBS). Both FDpV and IBS are methods with linear time and memory complexity, with respect to the size of the series. Thus the resulting method for change point analysis on Hurst index reaches also a linear complexity.
Annika Betken
,Martin Wendler
.
(2015)
.
"Subsampling for General Statistics under Long Range Dependence with application to change point analysis"
.
Martin Wendler
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا