Do you want to publish a course? Click here

The study of multi-frequency scattering of ten radio pulsars

51   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the results of the multi-frequency scatter time measurements for ten radio pulsars that were relatively less studied in this regard. The observations were performed using the Giant Meterwave Radio Telescope at the observing frequencies of 150, 235, 325, 610 and 1060~MHz. The data we collected, in conjunction with the results from other frequencies published earlier, allowed us to estimate the scatter time frequency scaling indices for eight of these sources. For PSR J1852$-$0635 it occurred that its profile undergoes a strong evolution with frequency, which makes the scatter time measurements difficult to perform, and for PSR J1835$-$1020 we were able to obtain reliable pulse broadening estimates at only two frequencies. We used the eight frequency scaling indices to estimate both: the electron density fluctuation strengths along the respective lines-of-sight, and the standardized amount of scattering at the frequency of 1 GHz. Combining the new data with the results published earlier by Lewandowski et al., we revisited the scaling index versus the dispersion measure (DM) relation, and similarly to some of the earlier studies we show that the average value of the scaling index deviates from the theoretical predictions for large DM pulsars, however it reaches the magnitude claimed by Lohmer et al. only for pulsars with very large DMs ($>$650 pc cm$^{-3}$). We also investigated the dependence of the scattering strength indicators on the pulsar distance, DM, and the position of the source in the Milky Way Galaxy.



rate research

Read More

We present multi-frequency scatter broadening evolution of 29 pulsars observed with the LOw Frequency ARray (LOFAR) and Long Wavelength Array (LWA). We conducted new observations using LOFAR Low Band Antennae (LBA) as well as utilized the archival data from LOFAR and LWA. This study has increased the total of all multi-frequency or wide-band scattering measurements up to a dispersion measure (DM) of 150~pc,cm$^{-3}$ by 60%. The scatter broadening timescale ($tau_{sc}$) measurements at different frequencies are often combined by scaling them to a common reference frequency of 1,GHz. Using our data, we show that the $tau_{sc}$--DM variations are best fitted for reference frequencies close to 200--300,MHz, and scaling to higher or lower frequencies results in significantly more scatter in data. We suggest that this effect might indicate a frequency dependence of the scatter broadening scaling index ($alpha$). However, a selection bias due to our chosen observing frequencies can not be ruled out with the current data set. Our data did not favour any particular model of the DM -- $tau_{sc}$ relations, and we do not see a statistically significant break at the low DM range in this relation. The turbulence spectral index ($beta$) is found to be steeper than that is expected from a Kolmogorov spectrum. This indicates that the local ISM turbulence may have a low wave-number cutoff or presence of large scale inhomogeneities in the line of sight to some of the reported pulsars.
LOFAR offers the unique capability of observing pulsars across the 10-240 MHz frequency range with a fractional bandwidth of roughly 50%. This spectral range is well-suited for studying the frequency evolution of pulse profile morphology caused by both intrinsic and extrinsic effects: such as changing emission altitude in the pulsar magnetosphere or scatter broadening by the interstellar medium, respectively. The magnitude of most of these effects increases rapidly towards low frequencies. LOFAR can thus address a number of open questions about the nature of radio pulsar emission and its propagation through the interstellar medium. We present the average pulse profiles of 100 pulsars observed in the two LOFAR frequency bands: High Band (120-167 MHz, 100 profiles) and Low Band (15-62 MHz, 26 profiles). We compare them with Westerbork Synthesis Radio Telescope (WSRT) and Lovell Telescope observations at higher frequencies (350 and1400 MHz) in order to study the profile evolution. The profiles are aligned in absolute phase by folding with a new set of timing solutions from the Lovell Telescope, which we present along with precise dispersion measures obtained with LOFAR. We find that the profile evolution with decreasing radio frequency does not follow a specific trend but, depending on the geometry of the pulsar, new components can enter into, or be hidden from, view. Nonetheless, in general our observations confirm the widening of pulsar profiles at low frequencies, as expected from radius-to-frequency mapping or birefringence theories. We offer this catalog of low-frequency pulsar profiles in a user friendly way via the EPN Database of Pulsar Profiles (http://www.epta.eu.org/epndb/).
We present low-frequency spectral energy distributions of 60 known radio pulsars observed with the Murchison Widefield Array (MWA) telescope. We searched the GaLactic and Extragalactic All-sky MWA (GLEAM) survey images for 200-MHz continuum radio emission at the position of all pulsars in the ATNF pulsar catalogue. For the 60 confirmed detections we have measured flux densities in 20 x 8 MHz bands between 72 and 231 MHz. We compare our results to existing measurements and show that the MWA flux densities are in good agreement.
We report the multi-frequency observations of two pulsars: J1740+1000 and B1800-21, using the Giant Metrewave Radio Telescope and the Green Bank Telescope. The main aim of these observations was to estimate the flux density spectrum of these pulsars, as both of them were previously reported to exhibit gigahertz-peaked spectra. J1740+1000 is a young pulsar far from the Galactic plane and the interpretation of its spectrum was inconclusive in the light of the recent flux density measurements. Our result supports the gigahertz-peaked interpretation of the PSR J1740+1000 spectrum. B1800-21 is a Vela-like pulsar near the W30 complex, whose spectrum exhibit a significant change between 2012 and 2014 year. Our analysis shows that the current shape of the spectrum is similar to that observed before 2009 and confirms that the observed spectral change happen in a time-scale of a few years.
Almost 50 years after radio pulsars were discovered in 1967, our understanding of these objects remains incomplete. On the one hand, within a few years it became clear that neutron star rotation gives rise to the extremely stable sequence of radio pulses, that the kinetic energy of rotation provides the reservoir of energy, and that electromagnetic fields are the braking mechanism. On the other hand, no consensus regarding the mechanism of coherent radio emission or the conversion of electromagnetic energy to particle energy yet exists. In this review, we report on three aspects of pulsar structure that have seen recent progress: the self-consistent theory of the magnetosphere of an oblique magnetic rotator; the location, geometry, and optics of radio emission; and evolution of the angle between spin and magnetic axes. These allow us to take the next step in understanding the physical nature of the pulsar activity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا