Do you want to publish a course? Click here

Development of microwave superconducting microresonators for neutrino mass measurement in the HOLMES framework

34   0   0.0 ( 0 )
 Added by Andrea Giachero Dr
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The European Research Council has recently funded HOLMES, a project with the aim of performing a calorimetric measurement of the electron neutrino mass measuring the energy released in the electron capture decay of 163Ho. The baseline for HOLMES are microcalorimeters coupled to Transition Edge Sensors (TESs) read out with rf-SQUIDs, for microwave multiplexing purposes. A promising alternative solution is based on superconducting microwave resonators, that have undergone rapid development in the last decade. These detectors, called Microwave Kinetic Inductance Detectors (MKIDs), are inherently multiplexed in the frequency domain and suitable for even larger-scale pixel arrays, with theoretical high energy resolution and fast response. The aim of our activity is to develop arrays of microresonator detectors for X-ray spectroscopy and suitable for the calorimetric measurement of the energy spectra of 163Ho. Superconductive multilayer films composed by a sequence of pure Titanium and stoichiometric TiN layers show many ideal properties for MKIDs, such as low loss, large sheet resistance, large kinetic inductance, and tunable critical temperature $T_c$. We developed Ti/TiN multilayer microresonators with $T_c$ within the range from 70 mK to 4.5 K and with good uniformity. In this contribution we present the design solutions adopted, the fabrication processes and the characterization results.



rate research

Read More

In recent years, the progress on low temperature detector technologies has allowed design of large scale experiments aiming at pushing down the sensitivity on the neutrino mass below 1,eV. Even with outstanding performances in both energy ($sim$eV on keV) and time resolution ($sim 1,mu$s) on the single channel, a large number of detectors working in parallel is required to reach a sub-eV sensitivity. HOLMES is a new experiment to directly measure the neutrino mass with a sensitivity as low as 2,eV. HOLMES will perform a calorimetric measurement of the energy released in the electron capture (EC) decay of 163Ho. In its final configuration, HOLMES will deploy 1000 detectors of low temperature microcalorimeters with implanted 163Ho nuclei. The baseline sensors for HOLMES are Mo/Cu TESs (Transition Edge Sensors) on SiNtextsubscript{x} membrane with gold absorbers. The readout is based on the use of rf-SQUIDs as input devices with flux ramp modulation for linearization purposes; the rf-SQUID is then coupled to a superconducting lambda/4-wave resonator in the GHz range, and the modulated signal is finally read out using the homodyne technique. The TES detectors have been designed with the aim of achieving an energy resolution of a few eV at the spectrum endpoint and a time resolution of a few micro-seconds, in order to minimize pile-up artifacts.
The HOLMES experiment will perform a precise calorimetric measurement of the end point of the Electron Capture (EC) decay spectrum of 163Ho in order to extract information on neutrino mass with a sensitivity below 2 eV. In its final configuration, HOLMES will deploy 1000 detectors of low-temperature microcalorimeters with implanted 163Ho nuclei. The baseline sensors for HOLMES are Mo/Cu TESs (Transition Edge Sensors) on SiNx membrane with gold absorbers. Considering the large number of pixels and an event rate of about 300 Hz/pixel, a large multiplexing factor and a large bandwidth are needed. To fulfill this requirement, HOLMES will exploit recent advances in microwave multiplexing. In this contribution, we present the status of the activities in development, the performances of the developed microwave-multiplexed readout system, and the results obtained with the detectors specifically designed for HOLMES in terms of noise, time, and energy resolutions
The assessment of neutrino absolute mass scale is still a crucial challenge in today particle physics and cosmology. Beta or electron capture spectrum end-point study is currently the only experimental method which can provide a model independent measurement of the absolute scale of neutrino mass. HOLMES is an experiment funded by the European Research Council to directly measure the neutrino mass. HOLMES will perform a calorimetric measurement of the energy released in the electron capture decay of the artificial isotope $^{163}$Ho. In a calorimetric measurement the energy released in the decay process is entirely contained into the detector, except for the fraction taken away by the neutrino. This approach eliminates both the issues related to the use of an external source and the systematic uncertainties arising from decays on excited final states. The most suitable detectors for this type of measurement are low temperature thermal detectors, where all the energy released into an absorber is converted into a temperature increase that can be measured by a sensitive thermometer directly coupled with the absorber. This measurement was originally proposed in 1982 by A. De Rujula and M. Lusignoli, but only in the last decade the technological progress in detectors development has allowed to design a sensitive experiment. HOLMES plans to deploy a large array of low temperature microcalorimeters with implanted $^{163}$Ho nuclei. In this contribution we outline the HOLMES project with its physics reach and technical challenges, along with its status and perspectives.
HOLMES is a new experiment aiming at directly measuring the neutrino mass with a sensitivity below 2 eV. HOLMES will perform a calorimetric measurement of the energy released in the decay of $^{163}$Ho. The calorimetric measurement eliminates systematic uncertainties arising from the use of external beta sources, as in experiments with spectrometers. This measurement was proposed in 1982 by A. De Rujula and M. Lusignoli, but only recently the detector technological progress has allowed to design a sensitive experiment. HOLMES will deploy a large array of low temperature microcalorimeters with implanted $^{163}$Ho nuclei. HOLMES, besides being an important step forward in the direct neutrino mass measurement with a calorimetric approach, will also establish the potential of this approach to extend the sensitivity down to 0.1 eV and lower. In its final configuration HOLMES will collect about $3cdot 10^{13}$ decays with 1000 detectors characterized by an instrumental energy resolution of the order of few eV and a time resolution of few microseconds. To embed the $^{163}$Ho into the gold absorbers a custom mass separator ion implanter is being developed. The detectors used for the HOLMES experiment will be Mo/Cu bilayers TESs (Transition Edge Sensors) on SiN$_x$ membrane with gold absorbers. Microwave multiplexed rf-SQUIDs are the best available technique to read out large array of such detectors. An extensive R&D activity is in progress in order to maximize the multiplexing factor while preserving the performances of the individual detectors. The current activities are focused on the the single detector performances optimization and on the $^{163}$Ho isotope production and embedding. A preliminary measurement of a sub-array of $4times 16$ detectors is planned late in 2017. In this contribution we present the HOLMES project with its technical challenges, its status and perspectives.
The determination of the neutrino mass is an open issue in modern particle physics and astrophysics. The direct mass measurement is the only theory-unrelated experimental tool capable to probe such quantity. The HOLMES experiment aims to measure the end-point energy of the electron capture (EC) decay of $^{163}$Ho with a statistical sensitivity on the neutrino mass as low as $sim 1$ eV/c$^2$. In order to acquire the large needed statistics, by keeping the pile-up contribution as low as possible, 1024 transition edge sensors (TESs) with high energy and time resolutions will be employed. Microcalorimeter and bolometer arrays based on transition edge sensor with thousands of pixels are under development for several space-based and ground-based applications, including astrophysics, nuclear and particle physics, and materials science. The common necessary challenge is to develop pratical multiplexing techniques in order to simplify the cryogenics and readout systems. Despite the various multiplexing variants which are being developed have been successful, new approaches are needed to enable scaling to larger pixel counts and faster sensors, as requested for HOLMES, reducing also the cost and complexity of readout. A very novel technique that meets all of these requirements is based on superconducting microwave resonators coupled to radio-frequency Superconducting Quantum Interference Devices, in which the the changes in the TES input current is tranduced to a change in phase of a microwave signal. In this work we introduce the basics of this technique, the design and development of the first two-channel read out system and its performances with the first TES detectors specifically designed for HOLMES. In the last part we explain how to extend this approach scaling to 1024 pixels.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا