No Arabic abstract
The IIB matrix model has been proposed as a non-perturbative definition of superstring theory. In this work, we study the Euclidean version of this model in which extra dimensions can be dynamically compactified if a scenario of spontaneously breaking the SO(10) rotational symmetry is realized. Monte Carlo calculations of the Euclidean IIB matrix model suffer from a very strong complex action problem due to the large fluctuations of the complex phase of the Pfaffian which appears after integrating out the fermions. We employ the factorization method in order to achieve effective sampling. We report on preliminary results that can be compared with previous studies of the rotational symmetry breakdown using the Gaussian expansion method.
The type IIB matrix model, also known as the IKKT matrix model, is a promising candidate for a nonperturbative formulation of superstring theory. In this talk we study the Euclidean version of the IKKT matrix model, which has a sign problem due to the Pfaffian coming from integrating out the fermionic degrees of freedom. To study the spontaneous breaking of the SO(10) rotational symmetry, we apply the Complex Langevin Method (CLM) to the Euclidean IKKT matrix model. We conclude that the SO(10) symmetry is broken to SO(3), in agreement with the previous studies by the Gaussian Expansion Method (GEM). We also apply the GEM to the deformed model and find consistency with the CLM result. These are proceedings of Takehiro Azumas talk at Asia-Pacific Symposium for Lattice Field Theory (APLAT 2020) on August 4-7, 2020, based on the paper arXiv:2002.07410.
We present a particle physics model based on a ten-dimensional (10D) super Yang-Mills (SYM) theory compactified on magnetized tori preserving four-dimensional ${cal N}=1$ supersymmetry. The low-energy spectrum contains the minimal supersymmetric standard model with hierarchical Yukawa couplings caused by a wavefunction localization of the chiral matter fields due to the existence of magnetic fluxes, allowing a semi-realistic pattern of the quark and the lepton masses and mixings. We show supersymmetric flavor structures at low energies induced by a moduli-mediated and an anomaly-mediated supersymmetry breaking.
The strategy for assigning $Z_{4R}$ parity in the string compactification is presented. For the visible sector, an anti-SU(5) (flipped-SU(5)) grand unification (GUT) model with three families is used to reduce the number of representations compared to the number in the minimal supersymmetric standard models (MSSMs). The SO(32) heterotic string is used to allow a large nonabelian gauge group SU($N$), $Nge 9$, for the hidden sector such that the number of extra U(1) factors is small. A discrete subgroup of the gauge U(1)s is defined as the $Z_{4R}$ parity. Spontaneous symmetry breaking of anti-SU(5) GUT is achieved by the vacuum expectation values of two index antisymmetric tensor Higgs fields ${bf 10}_{+1}$ and $overline{bf 10}_{-1}$ that led to our word `anti-SU(5). In the illustrated example, the multiplicity 3 in one twisted sector allows the permutation symmetry $S_3$ that leads us to select the third family members and one MSSM pair of the Higgs quintets.
In presence of a static pair of sources, the spectrum of low-lying states of any confining gauge theory in D space-time dimensions is described, at large source separations, by an effective string theory. Recently two important advances improved our understanding of this effective theory. First, it was realized that the form of the effective action is strongly constrained by the requirement of the Lorentz invariance of the gauge theory, which is spontaneously broken by the formation of a long confining flux tube in the vacuum. This constraint is strong enough to fix uniquely the first few subleading terms of the action. Second, it has been realized that the first of these allowed terms - a quartic polynomial in the field derivatives - is exactly the composite field $Tbar{T}$, built with the chiral components, $T$ and $bar{T}$, of the energy-momentum tensor of the 2d QFT describing the infrared limit of the effective string. This irrelevant perturbation is quantum integrable and yields, through the thermodynamic Bethe Ansatz (TBA), the energy levels of the string which exactly coincide with the Nambu-Goto spectrum. In this talk we first review the general implications of these two results and then, as a test of the power of these methods, use them to construct the first few boundary corrections to the effective string action.
In these lecture notes some applications of Monte Carlo integration methods in Quantum Field Theory - in particular in Quantum Chromodynamics - are introduced and discussed.