No Arabic abstract
One of the most powerful techniques to study the dark sector of the Universe is weak gravitational lensing. In practice, to infer the reduced shear, weak lensing measures galaxy shapes, which are the consequence of both the intrinsic ellipticity of the sources and of the integrated gravitational lensing effect along the line of sight. Hence, a very large number of galaxies is required in order to average over their individual properties and to isolate the weak lensing cosmic shear signal. If this `shape noise can be reduced, significant advances in the power of a weak lensing surveys can be expected. This paper describes a general method for extracting the probability distributions of parameters from catalogues of data using Voronoi cells, which has several applications, and has synergies with Bayesian hierarchical modelling approaches. This allows us to construct a probability distribution for the variance of the intrinsic ellipticity as a function of galaxy property using only photometric data, allowing a reduction of shape noise. As a proof of concept the method is applied to the CFHTLenS survey data. We use this approach to investigate trends of galaxy properties in the data and apply this to the case of weak lensing power spectra.
The robust estimation of the tiny distortions (shears) of galaxy shapes caused by weak gravitational lensing in the presence of much larger shape distortions due to the point-spread function (PSF) has been widely investigated. One major problem is that most galaxy shape measurement methods are subject to bias due to pixel noise in the images (noise bias). Noise bias is usually characterized using uncorrelated noise fields; however, real images typically have low-level noise correlations due to galaxies below the detection threshold, and some types of image processing can induce further noise correlations. We investigate the effective detection significance and its impact on noise bias in the presence of correlated noise for one method of galaxy shape estimation. For a fixed noise variance, the biases in galaxy shape estimates can differ substantially for uncorrelated versus correlated noise. However, use of an estimate of detection significance that accounts for the noise correlations can almost entirely remove these differences, leading to consistent values of noise bias as a function of detection significance for correlated and uncorrelated noise. We confirm the robustness of this finding to properties of the galaxy, the PSF, and the noise field, and quantify the impact of anisotropy in the noise correlations. Our results highlight the importance of understanding the pixel noise model and its impact on detection significances when correcting for noise bias on weak lensing.
We construct the spin flaglet transform, a wavelet transform to analyze spin signals in three dimensions. Spin flaglets can probe signal content localized simultaneously in space and frequency and, moreover, are separable so that their angular and radial properties can be controlled independently. They are particularly suited to analyzing of cosmological observations such as the weak gravitational lensing of galaxies. Such observations have a unique 3D geometrical setting since they are natively made on the sky, have spin angular symmetries, and are extended in the radial direction by additional distance or redshift information. Flaglets are constructed in the harmonic space defined by the Fourier-Laguerre transform, previously defined for scalar functions and extended here to signals with spin symmetries. Thanks to various sampling theorems, both the Fourier-Laguerre and flaglet transforms are theoretically exact when applied to bandlimited signals. In other words, in numerical computations the only loss of information is due to the finite representation of floating point numbers. We develop a 3D framework relating the weak lensing power spectrum to covariances of flaglet coefficients. We suggest that the resulting novel flaglet weak lensing estimator offers a powerful alternative to common 2D and 3D approaches to accurately capture cosmological information. While standard weak lensing analyses focus on either real or harmonic space representations (i.e., correlation functions or Fourier-Bessel power spectra, respectively), a wavelet approach inherits the advantages of both techniques, where both complicated sky coverage and uncertainties associated with the physical modeling of small scales can be handled effectively. Our codes to compute the Fourier-Laguerre and flaglet transforms are made publicly available.
Weak gravitational lensing measurements are traditionally made at optical wavelengths where many highly resolved galaxy images are readily available. However, the Square Kilometre Array (SKA) holds great promise for this type of measurement at radio wavelengths owing to its greatly increased sensitivity and resolution over typical radio surveys. The key to successful weak lensing experiments is in measuring the shapes of detected sources to high accuracy. In this document we describe a simulation pipeline designed to simulate radio images of the quality required for weak lensing, and will be typical of SKA observations. We provide as input, images with realistic galaxy shapes which are then simulated to produce images as they would have been observed with a given radio interferometer. We exploit this pipeline to investigate various stages of a weak lensing experiment in order to better understand the effects that may impact shape measurement. We first show how the proposed SKA1-Mid array configurations perform when we compare the (known) input and output ellipticities. We then investigate how making small changes to these array configurations impact on this input-outut ellipticity comparison. We also demonstrate how alternative configurations for SKA1-Mid that are smaller in extent, and with a faster survey speeds produce similar performance to those originally proposed. We then show how a notional SKA configuration performs in the same shape measurement challenge. Finally, we describe ongoing efforts to utilise our simulation pipeline to address questions relating to how applicable current (mostly originating from optical data) shape measurement techniques are to future radio surveys. As an alternative to such image plane techniques, we lastly discuss a shape measurement technique based on the shapelets formalism that reconstructs the source shapes directly from the visibility data.
Convergence maps of the integrated matter distribution are a key science result from weak gravitational lensing surveys. To date, recovering convergence maps has been performed using a planar approximation of the celestial sphere. However, with the increasing area of sky covered by dark energy experiments, such as Euclid, the Large Synoptic Survey Telescope (LSST), and the Wide Field Infrared Survey Telescope (WFIRST), this assumption will no longer be valid. We recover convergence fields on the celestial sphere using an extension of the Kaiser-Squires estimator to the spherical setting. Through simulations we study the error introduced by planar approximations. Moreover, we examine how best to recover convergence maps in the planar setting, considering a variety of different projections and defining the local rotations that are required when projecting spin fields such as cosmic shear. For the sky coverages typical of future surveys, errors introduced by projection effects can be of order tens of percent, exceeding 50% in some cases. The stereographic projection, which is conformal and so preserves local angles, is the most effective planar projection. In any case, these errors can be avoided entirely by recovering convergence fields directly on the celestial sphere. We apply the spherical Kaiser-Squires mass-mapping method presented to the public Dark Energy Survey (DES) science verification data to recover convergence maps directly on the celestial sphere.
We present a study of weak lensing shear measurements for simulated galaxy images at radio wavelengths. We construct a simulation pipeline into which we can input galaxy images of known ellipticity, and with which we then simulate observations with eMERLIN and the international LOFAR array. The simulations include the effects of the CLEAN algorithm, uv sampling, observing angle, and visibility noise, and produce realistic restored images of the galaxies. We apply a shapelet-based shear measurement method to these images and test our ability to recover the true source ellipticities. We model and deconvolve the effective PSF, and find suitable parameters for CLEAN and shapelet decomposition of galaxies. We demonstrate that ellipticities can be measured faithfully in these radio simulations, with no evidence of an additive bias and a modest (10%) multiplicative bias on the ellipticity measurements. Our simulation pipeline can be used to test shear measurement procedures and systematics for the next generation of radio telescopes.