Do you want to publish a course? Click here

Bayesian detection of embryonic gene expression onset in C. elegans

89   0   0.0 ( 0 )
 Added by Jie Hu
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

To study how a zygote develops into an embryo with different tissues, large-scale 4D confocal movies of C. elegans embryos have been produced recently by experimental biologists. However, the lack of principled statistical methods for the highly noisy data has hindered the comprehensive analysis of these data sets. We introduced a probabilistic change point model on the cell lineage tree to estimate the embryonic gene expression onset time. A Bayesian approach is used to fit the 4D confocal movies data to the model. Subsequent classification methods are used to decide a model selection threshold and further refine the expression onset time from the branch level to the specific cell time level. Extensive simulations have shown the high accuracy of our method. Its application on real data yields both previously known results and new findings.



rate research

Read More

We consider multivariate two-sample tests of means, where the location shift between the two populations is expected to be related to a known graph structure. An important application of such tests is the detection of differentially expressed genes between two patient populations, as shifts in expression levels are expected to be coherent with the structure of graphs reflecting gene properties such as biological process, molecular function, regulation or metabolism. For a fixed graph of interest, we demonstrate that accounting for graph structure can yield more powerful tests under the assumption of smooth distribution shift on the graph. We also investigate the identification of nonhomogeneous subgraphs of a given large graph, which poses both computational and multiple hypothesis testing problems. The relevance and benefits of the proposed approach are illustrated on synthetic data and on breast and bladder cancer gene expression data analyzed in the context of KEGG and NCI pathways.
Cell division timing is critical for cell fate specification and morphogenesis during embryogenesis. How division timings are regulated among cells during development is poorly understood. Here we focus on the comparison of asynchrony of division between sister cells (ADS) between wild-type and mutant individuals of Caenorhabditis elegans. Since the replicate number of mutant individuals of each mutated gene, usually one, is far smaller than that of wild-type, direct comparison of two distributions of ADS between wild-type and mutant type, such as Kolmogorov- Smirnov test, is not feasible. On the other hand, we find that sometimes ADS is correlated with the life span of corresponding mother cell in wild-type. Hence, we apply a semiparametric Bayesian quantile regression method to estimate the 95% confidence interval curve of ADS with respect to life span of mother cell of wild-type individuals. Then, mutant-type ADSs outside the corresponding confidence interval are selected out as abnormal one with a significance level of 0.05. Simulation study demonstrates the accuracy of our method and Gene Enrichment Analysis validates the results of real data sets.
When dealing with large scale gene expression studies, observations are commonly contaminated by unwanted variation factors such as platforms or batches. Not taking this unwanted variation into account when analyzing the data can lead to spurious associations and to missing important signals. When the analysis is unsupervised, e.g., when the goal is to cluster the samples or to build a corrected version of the dataset - as opposed to the study of an observed factor of interest - taking unwanted variation into account can become a difficult task. The unwanted variation factors may be correlated with the unobserved factor of interest, so that correcting for the former can remove the latter if not done carefully. We show how negative control genes and replicate samples can be used to estimate unwanted variation in gene expression, and discuss how this information can be used to correct the expression data or build estimators for unsupervised problems. The proposed methods are then evaluated on three gene expression datasets. They generally manage to remove unwanted variation without losing the signal of interest and compare favorably to state of the art corrections.
151 - Bank G. Fenyves 2021
Graph theoretical analyses of nervous systems usually omit the aspect of connection polarity, due to data insufficiency. The chemical synapse network of Caenorhabditis elegans is a well-reconstructed directed network, but the signs of its connections are yet to be elucidated. Here, we present the gene expression-based sign prediction of the ionotropic chemical synapse connectome of C. elegans (3,638 connections and 20,589 synapses total), incorporating available presynaptic neurotransmitter and postsynaptic receptor gene expression data for three major neurotransmitter systems. We made predictions for more than two-thirds of these chemical synapses and observed an excitatory-inhibitory (E:I) ratio close to 4:1 which was found similar to that observed in many real-world networks. Our open source tool (http://EleganSign.linkgroup.hu) is simple but efficient in predicting polarities by integrating neuronal connectome and gene expression data.
We propose a novel Bayesian optimisation procedure for outlier detection in the Capital Asset Pricing Model. We use a parametric product partition model to robustly estimate the systematic risk of an asset. We assume that the returns follow independent normal distributions and we impose a partition structure on the parameters of interest. The partition structure imposed on the parameters induces a corresponding clustering of the returns. We identify via an optimisation procedure the partition that best separates standard observations from the atypical ones. The methodology is illustrated with reference to a real data set, for which we also provide a microeconomic interpretation of the detected outliers.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا