Do you want to publish a course? Click here

An Overview of Transverse Momentum Dependent Factorization and Evolution

68   0   0.0 ( 0 )
 Added by Ted Rogers
 Publication date 2015
  fields
and research's language is English
 Authors Ted C. Rogers




Ask ChatGPT about the research

I review TMD factorization and evolution theorems, with an emphasis on the treatment by Collins and originating in the Collins-Soper-Sterman (CSS) formalism. I summarize basic results while attempting to trace their development over that past several decades.



rate research

Read More

The properties and behaviour of the solutions of the recently obtained $k_t$-dependent evolution equations are investigated. When used to reproduce transverse momentum spectra of hadrons in Semi-Inclusive DIS, an encouraging agreement with data is found. The present analysis also supports at the phenomenological level the factorization properties of the Semi-Inclusive DIS cross-sections in terms of $k_t$-dependent distributions. Further improvements and possible developments of the proposed evolution equations are envisaged.
87 - A.P. Chen , J.P. Ma 2016
We study transverse-momentum-dependent factorization at twist-3 for Drell-Yan processes. The factorization can be derived straightforwardly at leading order of $alpha_s$. But at this order we find that light-cone singularities already exist and effects of soft gluons are not correctly factorized. We regularize the singularities with gauge links off the light-cone and introduce a soft factor to factorize the effects of soft gluons. Interestingly, the soft factor must be included in the definition of subtracted TMD parton distributions to correctly factorize the effects of soft gluons. We derive the Collins-Soper equation for one of twist-3 TMD parton distributions. The equation can be useful for resummation of large logarithms terms appearing in the corresponding structure function in collinear factorization. However, the derived equation is nonhomogeneous. This will make the resummation complicated.
We construct an improved implementation for combining transverse-momentum-dependent (TMD) factorization and collinear factorization. TMD factorization is suitable for low transverse momentum physics, while collinear factorization is suitable for high transverse momenta and for a cross section integrated over transverse momentum. The result is a modified version of the standard $W+Y$ prescription traditionally used in the Collins-Soper-Sterman (CSS) formalism and related approaches. We further argue that questions regarding the shape and $Q$-dependence of the cross sections at lower $Q$ are largely governed by the matching to the $Y$-term.
Transverse-momentum-dependent (TMD) gluon distributions have different operator definitions, depending on the process under consideration. We study that aspect of TMD factorization in the small-x limit, for the various unpolarized TMD gluon distributions encountered in the literature. To do this, we consider di-jet production in hadronic collisions, since this process allows to be exhaustive with respect to the possible operator definitions, and is suitable to be investigated at small x. Indeed, for forward and nearly back-to-back jets, one can apply both the TMD factorization and Color Glass Condensate (CGC) approaches to compute the di-jet cross-section, and compare the results. Doing so, we show that both descriptions coincide, and we show how to express the various TMD gluon distributions in terms of CGC correlators of Wilson lines, while keeping Nc finite. We then proceed to evaluate them by solving the JIMWLK equation numerically. We obtain that at large transverse momentum, the process dependence essentially disappears, while at small transverse momentum, non-linear saturation effects impact the various TMD gluon distributions in very different ways. We notice the presence of a geometric scaling regime for all the TMD gluon distributions studied: the dipole one, the Weizsacker-Williams one, and the six others involved in forward di-jet production.
We reconsider the evolution equations for transverse momentum dependent distributions recently proposed by us and recast them in a form which allows the comparison with results recently appeared in the literature. We show under which conditions the obtained results might be consistent with each other.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا